Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
19,164 result(s) for "Wnt protein"
Sort by:
ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling
Mammalian sex determination is controlled by the antagonistic interactions of two genetic pathways: The SRY-SOX9-FGF9 network promotes testis determination partly by opposing proovarian pathways, while RSPO1/WNT-β-catenin/FOXL2 signals control ovary development by inhibiting SRY-SOX9-FGF9. The molecular basis of this mutual antagonism is unclear. Here we show that ZNRF3, a WNT signaling antagonist and direct target of RSPO1-mediated inhibition, is required for sex determination in mice. XY mice lacking ZNRF3 exhibit complete or partial gonadal sex reversal, or related defects. These abnormalities are associated with ectopic WNT/β-catenin activity and reduced Sox9 expression during fetal sex determination. Using exome sequencing of individuals with 46, XY disorders of sex development, we identified three human ZNRF3 variants in very rare cases of XY female presentation. We tested two missense variants and show that these disrupt ZNRF3 activity in both human cell lines and zebrafish embryo assays. Our data identify a testis-determining function for ZNRF3 and indicate a mechanism of direct molecular interaction between two mutually antagonistic organogenetic pathways.
The complex role of Wnt ligands in type 2 diabetes mellitus and related complications
Type 2 diabetes mellitus (T2DM) is one of the major chronic diseases, whose prevalence is increasing dramatically worldwide and can lead to a range of serious complications. Wnt ligands (Wnts) and their activating Wnt signalling pathways are closely involved in the regulation of various processes that are important for the occurrence and progression of T2DM and related complications. However, our understanding of their roles in these diseases is quite rudimentary due to the numerous family members of Wnts and conflicting effects via activating the canonical and/or non‐canonical Wnt signalling pathways. In this review, we summarize the current findings on the expression pattern and exact role of each human Wnt in T2DM and related complications, including Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11 and Wnt16. Moreover, the role of main antagonists (sFRPs and WIF‐1) and coreceptor (LRP6) of Wnts in T2DM and related complications and main challenges in designing Wnt‐based therapeutic approaches for these diseases are discussed. We hope a deep understanding of the mechanistic links between Wnt signalling pathways and diabetic‐related diseases will ultimately result in a better management of these diseases.
Wnt/β-catenin signaling in cancers and targeted therapies
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
WNT-5A: signaling and functions in health and disease
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Cardiac progenitors instruct second heart field fate through Wnts
The heart develops in a synchronized sequence of proliferation and differentiation of cardiac progenitor cells (CPCs) from two anatomically distinct pools of cells, the first heart field (FHF) and second heart field (SHF). Congenital heart defects arise upon dysregulation of these processes, many of which are restricted to derivatives of the FHF or SHF. Of the conserved set of signaling pathways that regulate development, the Wnt signaling pathway has long been known for its importance in SHF development. The source of such Wnts has remained elusive, though it has been postulated that these Wnts are secreted from ectodermal or endodermal sources. The central question remains unanswered: Where do these Wnts come from? Here, we show that CPCs autoregulate SHF development via Wnt through genetic manipulation of a key Wnt export protein (Wls), scRNA-seq analysis of CPCs, and use of our precardiac organoid system. Through this, we identify dysregulated developmental trajectories of anterior SHF cell fate, leading to a striking single ventricle phenotype in knockout embryos. We then applied our findings to our precardiac organoid model and found that Wnt2 is sufficient to restore SHF cell fate in our model of disrupted endogenous Wnt signaling. In this study, we provide a basis for SHF cell fate decision—proliferation vs. differentiation—autoregulated by CPCs through Wnt.
Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/α-albumin
Wnt plays important role during development and in various diseases. Because Wnts are lipidated and highly hydrophobic, they can only be purified in the presence of detergents, limiting their use in various in vitro and in vivo assays. We purified N-terminally tagged recombinant Wnt3a secreted from cells and accidentally discovered that Wnt3a co-purified with a glycoprotein afamin derived from the bovine serum included in the media. Wnt3a forms a 1:1 complex with afamin, which remains soluble in aqueous buffer after isolation, and can induce signaling in various cellular systems including the intestical stem cell growth assay. By co-expressing with afamin, biologically active afamin-Wnt complex can be easily obtained in large quantity. As afamin can also solubilize Wnt5a, Wnt3, and many more Wnt subtypes, afamin complexation will open a way to put various Wnt ligands and their signaling mechanisms under a thorough biochemical scrutiny that had been difficult for years. The Wnt signaling pathway helps animal cells to communicate with each other to coordinate the formation of tissues and organs. The pathway relies on a protein called Wnt that is released from cells and binds to a receptor protein called Frizzled on the surface of other cells to trigger changes in gene activation. Defects in the Wnt signaling pathway contribute to cancer and other diseases. Great progress has been made in understanding Wnt signaling, but certain types of experiments have been hindered because it has been difficult to isolate pure Wnt proteins. This is partly because Wnt proteins are attached to a fatty molecule that is important for their activity but also makes these proteins “hydrophobic,” or repelled by water. Hydrophobic proteins have a strong tendency to clump or aggregate when they are isolated from cells, which reduces the biological activity of proteins. Adding detergents to the aggregates can break them apart, but can also hinder the proteins’ activities and cannot be used in all experiments. Previous research has shown that mammalian cells grown in the presence of blood serum can produce Wnt proteins that do not aggregate. Blood serum is a complex mixture of different molecules obtained from blood and is commonly added to cells grown in the laboratory. However, adding serum can have also undesirable effects and it is not understood why serum stops Wnt proteins forming aggregates. Using biochemical methods, Mihara et al. have now identified the component in blood serum that prevents Wnt proteins from aggregating. The experiments showed that a protein in the blood serum called afamin binds tightly to Wnt proteins. Furthermore, the complex between afamin and Wnt was biologically active, and could bind to the Frizzled receptor and trigger an appropriate response in cells. Mihara et al. then generated cells that produced both afamin and Wnt and used them to purify large amounts of biologically active Wnt/afamin complexes. This method avoids the potentially undesirable effects of using detergents or serum, and will therefore likely be useful for future experiments and therapeutic applications. Further work is also needed to understand why afamin binds to Wnt proteins and whether this is important for Wnt signaling.
A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma
A subset of Kras and p53 mutant cancer cells acts as a Wnt-producing niche for another cancer cell subset, and porcupine inhibition disrupts Wnt secretion in this niche, thereby suppressing proliferative potential and leading to therapeutic benefit. Lung cancer niche drives tumour growth Lung adenocarcinomas are aggressive tumours which are associated with poor treatment outcome. Tyler Jacks and colleagues now show that lung adenocarcinomas display two distinct subpopulations of tumour cells. One of these shows high levels of Wnt signalling and gives rise to the second one that produces Wnt ligands. The latter population fuels tumour growth of the former, showing that lung cancer cells can produce their own niche. These findings shed new light on the mechanisms underlying intratumoural heterogeneity which may have therapeutic implications. The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells 1 , 2 . Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration 3 , 4 , 5 . Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies.
TCF-1: a maverick in T cell development and function
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.The transcription factor TCF-1 has multiple roles during T cell development and in mature T cells. Gounari and Khazaie review the potential mechanisms by which TCF-1 regulates gene expression.
Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities
The Wnt/β-catenin pathway comprises a family of proteins that play critical roles in embryonic development and adult tissue homeostasis. The deregulation of Wnt/β-catenin signalling often leads to various serious diseases, including cancer and non-cancer diseases. Although many articles have reviewed Wnt/β-catenin from various aspects, a systematic review encompassing the origin, composition, function, and clinical trials of the Wnt/β-catenin signalling pathway in tumour and diseases is lacking. In this article, we comprehensively review the Wnt/β-catenin pathway from the above five aspects in combination with the latest research. Finally, we propose challenges and opportunities for the development of small-molecular compounds targeting the Wnt signalling pathway in disease treatment.
Noncanonical Wnt Signaling Promotes Myofibroblast Differentiation in Pulmonary Fibrosis
The Wnt/β-catenin pathway initiates a signaling cascade that is critical in cell differentiation and the normal development of multiple organ systems. The reactivation of this pathway has been documented in experimental and human idiopathic pulmonary fibrosis, wherein Wnt/β-catenin activation has been implicated in epithelial-cell repair. Furthermore, the canonical ligand Wnt3a is known to induce myofibroblast differentiation; however, the role of noncanonical Wnt ligands remains unclear. This study showed significantly higher levels of Wnt11 expression in cells from both patients with idiopathic pulmonary fibrosis and bleomycin-treated mice, as well as in TGFβ-treated mouse lung fibroblasts. Moreover, Wnt11 induced myofibroblast differentiation as manifested by increased α-SMA (ACTA2) expression, which was similar to that induced by canonical Wnt3a/β-catenin signaling. Further investigation revealed that Wnt11 induction of α-SMA was associated with the activation of JNK (c-Jun N-terminal kinase)/c-Jun signaling and was inhibited by a JNK inhibitor. The potential importance of this signaling pathway was supported by evidence showing significantly increased levels of Wnt11 and activated JNK in the lungs of mice with bleomycin-induced pulmonary fibrosis. Interestingly, fibroblasts did not express canonical Wnt3a, but treatment of these cells with exogenous Wnt3a induced endogenous Wnt11 and Wnt5a, resulting in repression of the Wnt3a/β-catenin target gene Axin2. These findings suggested that the noncanonical Wnt induction of myofibroblast differentiation mediated by the JNK/c-Jun pathway might play a significant role in pulmonary fibrosis, in addition to or in synergy with canonical Wnt3a/β-catenin signaling. Moreover, Wnt3a activation of noncanonical Wnt signaling might trigger a switch from canonical to noncanonical Wnt signaling to induce myofibroblast differentiation.