Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,139 result(s) for "Wounds and Injuries - physiopathology"
Sort by:
Inflammation in Chronic Wounds
Non-healing chronic wounds present a major biological, psychological, social, and financial burden on both individual patients and the broader health system. Pathologically extensive inflammation plays a major role in the disruption of the normal healing cascade. The causes of chronic wounds (venous, arterial, pressure, and diabetic ulcers) can be examined through a juxtaposition of normal healing and the rogue inflammatory response created by the common components within chronic wounds (ageing, hypoxia, ischaemia-reperfusion injury, and bacterial colonisation). Wound bed care through debridement, dressings, and antibiotics currently form the basic mode of treatment. Despite recent setbacks, pharmaceutical adjuncts form an interesting area of research.
Acute kidney injury in trauma patients admitted to the ICU: a systematic review and meta-analysis
PurposeTo perform a systematic review and meta-analysis of acute kidney injury (AKI) in trauma patients admitted to the intensive care unit (ICU).MethodsWe conducted a systematic literature search of studies on AKI according to RIFLE, AKIN, or KDIGO criteria in trauma patients admitted to the ICU (PROSPERO CRD42017060420). We searched PubMed, Cochrane Database of Systematic Reviews, UpToDate, and NICE through 3 December 2018. Data were collected on incidence of AKI, risk factors, renal replacement therapy (RRT), renal recovery, length of stay (LOS), and mortality. Pooled analyses with random effects models yielded mean differences, OR, and RR, with 95% CI.ResultsTwenty-four observational studies comprising 25,182 patients were included. Study quality (Newcastle–Ottawa scale) was moderate. Study heterogeneity was substantial. Incidence of post-traumatic AKI in the ICU was 24% (20–29), of which 13% (10–16) mild, 5% (3–7) moderate, and 4% (3–6) severe AKI. Risk factors for AKI were African American descent, high age, chronic hypertension, diabetes mellitus, high Injury Severity Score, abdominal injury, shock, low Glasgow Coma Scale (GCS) score, high APACHE II score, and sepsis. AKI patients had 6.0 (4.0–7.9) days longer ICU LOS and increased risk of death [RR 3.4 (2.1–5.7)] compared to non-AKI patients. In patients with AKI, RRT was used in 10% (6–15). Renal recovery occurred in 96% (78–100) of patients.ConclusionsAKI occurred in 24% of trauma patients admitted to the ICU, with an RRT use among these of 10%. Presence of AKI was associated with increased LOS and mortality, but renal recovery in AKI survivors was good.
Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin
Scars are more severe when the subcutaneous fascia beneath the dermis is injured upon surgical or traumatic wounding. Here, we present a detailed analysis of fascia cell mobilisation by using deep tissue intravital live imaging of acute surgical wounds, fibroblast lineage-specific transgenic mice, and skin-fascia explants (scar-like tissue in a dish – SCAD). We observe that injury triggers a swarming-like collective cell migration of fascia fibroblasts that progressively contracts the skin and form scars. Swarming is exclusive to fascia fibroblasts, and requires the upregulation of N-cadherin. Both swarming and N-cadherin expression are absent from fibroblasts in the upper skin layers and the oral mucosa, tissues that repair wounds with minimal scar. Impeding N-cadherin binding inhibits swarming and skin contraction, and leads to reduced scarring in SCADs and in animals. Fibroblast swarming and N-cadherin thus provide therapeutic avenues to curtail fascia mobilisation and pathological fibrotic responses across a range of medical settings. Extensive scars develop in deep wounds as opposed to superficial wounds but it is unclear why. Here, the authors use live imaging of physiologic wounds and scars formed ex vivo to show that fascia fibroblasts upregulate N-cadherin allowing coordinated cell migration that drives extensive scar formation of deep wounds.
Adverse childhood experiences and trauma informed care: the future of health care
Adverse childhood experiences (ACEs) are related to short- and long-term negative physical and mental health consequences among children and adults. Studies of the last three decades on ACEs and traumatic stress have emphasized their impact and the importance of preventing and addressing trauma across all service systems utilizing universal systemic approaches. Current developments on the implementation of trauma informed care (TIC) in a variety of service systems call for the surveillance of trauma, resiliency, functional capacity, and health impact of ACEs. Despite such efforts in adult medical care, early identification of childhood trauma in children still remains a significant public health need. This article reviews childhood adversity and traumatic toxic stress, presents epidemiologic data on the prevalence of ACEs and their physical and mental health impacts, and discusses intervention modalities for prevention.
Immunopathophysiology of trauma-related acute kidney injury
Physical trauma can affect any individual and is globally accountable for more than one in every ten deaths. Although direct severe kidney trauma is relatively infrequent, extrarenal tissue trauma frequently results in the development of acute kidney injury (AKI). Various causes, including haemorrhagic shock, rhabdomyolysis, use of nephrotoxic drugs and infectious complications, can trigger and exacerbate trauma-related AKI (TRAKI), particularly in the presence of pre-existing or trauma-specific risk factors. Injured, hypoxic and ischaemic tissues expose the organism to damage-associated and pathogen-associated molecular patterns, and oxidative stress, all of which initiate a complex immunopathophysiological response that results in macrocirculatory and microcirculatory disturbances in the kidney, and functional impairment. The simultaneous activation of components of innate immunity, including leukocytes, coagulation factors and complement proteins, drives kidney inflammation, glomerular and tubular damage, and breakdown of the blood–urine barrier. This immune response is also an integral part of the intense post-trauma crosstalk between the kidneys, the nervous system and other organs, which aggravates multi-organ dysfunction. Necessary lifesaving procedures used in trauma management might have ambivalent effects as they stabilize injured tissue and organs while simultaneously exacerbating kidney injury. Consequently, only a small number of pathophysiological and immunomodulatory therapeutic targets for TRAKI prevention have been proposed and evaluated.Acute kidney injury is a common complication of trauma. Here, the authors examine how, in addition to direct trauma to the kidneys, the pathophysiological responses to traumatic injuries in distant organs, including immune responses, can result in kidney dysfunction.
The systemic immune response to trauma: an overview of pathophysiology and treatment
Improvements in the control of haemorrhage after trauma have resulted in the survival of many people who would otherwise have died from the initial loss of blood. However, the danger is not over once bleeding has been arrested and blood pressure restored. Two-thirds of patients who die following major trauma now do so as a result of causes other than exsanguination. Trauma evokes a systemic reaction that includes an acute, non-specific, immune response associated, paradoxically, with reduced resistance to infection. The result is damage to multiple organs caused by the initial cascade of inflammation aggravated by subsequent sepsis to which the body has become susceptible. This Series examines the biological mechanisms and clinical implications of the cascade of events caused by large-scale trauma that leads to multiorgan failure and death, despite the stemming of blood loss. Furthermore, the stark and robust epidemiological finding—namely, that age has a profound influence on the chances of surviving trauma irrespective of the nature and severity of the injury—will be explored. Advances in our understanding of the inflammatory response to trauma, the impact of ageing on this response, and how this information has led to new and emerging treatments aimed at combating immune dysregulation and reduced immunity after injury will also be discussed.
Splenic trauma: WSES classification and guidelines for adult and pediatric patients
Spleen injuries are among the most frequent trauma-related injuries. At present, they are classified according to the anatomy of the injury. The optimal treatment strategy, however, should keep into consideration the hemodynamic status, the anatomic derangement, and the associated injuries. The management of splenic trauma patients aims to restore the homeostasis and the normal physiopathology especially considering the modern tools for bleeding management. Thus, the management of splenic trauma should be ultimately multidisciplinary and based on the physiology of the patient, the anatomy of the injury, and the associated lesions. Lastly, as the management of adults and children must be different, children should always be treated in dedicated pediatric trauma centers. In fact, the vast majority of pediatric patients with blunt splenic trauma can be managed non-operatively. This paper presents the World Society of Emergency Surgery (WSES) classification of splenic trauma and the management guidelines.
Augmented Renal Clearance in Critically Ill Patients: A Systematic Review
Background Traditionally, renal function in critically ill patients has been assessed to identify renal dysfunction, and dose adjustment is generally accepted in such a context. Nevertheless, augmented renal clearance (ARC) is a less well-studied phenomenon that could lead to faster elimination of drugs, resulting in subtherapeutic concentrations and poorer clinical outcomes when standard dosage guidelines are followed. Objective The aim of this systematic review was to gather and summarise all the available evidence on ARC in critically ill patients, including its definition, underlying mechanisms, epidemiology, diagnosis and impact on both drug pharmacokinetics and clinical outcomes. Method A systematic review was conducted to include all the original studies that provided information on ARC in critically ill patients, and is reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results Augmented renal clearance, defined as a creatinine clearance (CrCl) > 130 mL/min/1.73 m 2 , preferably measured in urine, is present in 20–65% of critically ill patients. Younger age, polytrauma and lower severity illness have been identified as risk factors. An influence of ARC on antimicrobial pharmacokinetics has been observed, with ARC consistently being associated with subtherapeutic antibiotic plasma concentrations. Conclusion ARC is a prevalent condition in critically ill patients, especially in young people, with urinary CrCl being the best diagnostic method because mathematical estimates tend to underestimate CrCl. ARC increases renal drug elimination and has a clear influence on certain antimicrobial plasma levels, but is yet to define its impact on clinical outcomes and on pharmacokinetics of other types of drugs. Research on the need to stage ARC and establish specific dosing guidelines is warranted.
Resuscitation fluid types in sepsis, surgical, and trauma patients: a systematic review and sequential network meta-analyses
Background Crystalloids and different component colloids, used for volume resuscitation, are sometimes associated with various adverse effects. Clinical trial findings for such fluid types in different patients’ conditions are conflicting. Whether the mortality benefit of balanced crystalloid than saline can be inferred from sepsis to other patient group is uncertain, and adverse effect profile is not comprehensive. This study aims to compare the survival benefits and adverse effects of seven fluid types with network meta-analysis in sepsis, surgical, trauma, and traumatic brain injury patients. Methods Searched databases (PubMed, EMBASE, and Cochrane CENTRAL) and reference lists of relevant articles occurred from inception until January 2020. Studies on critically ill adults requiring fluid resuscitation were included. Intervention studies reported on balanced crystalloid, saline, iso-oncotic albumin, hyperoncotic albumin, low molecular weight hydroxyethyl starch (L-HES), high molecular weight HES, and gelatin. Network meta-analyses were conducted using random-effects model to calculate odds ratio (OR) and mean difference. Risk of Bias tool 2.0 was used to assess bias. Confidence in Network Meta-Analysis (CINeMA) web application was used to rate confidence in synthetic evidence. Results Fifty-eight trials ( n  = 26,351 patients) were identified. Seven fluid types were evaluated. Among patients with sepsis and surgery, balanced crystalloids and albumin achieved better survival, fewer acute kidney injury, and smaller blood transfusion volumes than saline and L-HES. In those with sepsis, balanced crystalloids significantly reduced mortality more than saline (OR 0.84; 95% CI 0.74–0.95) and L-HES (OR 0.81; 95% CI 0.69–0.95) and reduced acute kidney injury more than L-HES (OR 0.80; 95% CI 0.65–0.99). However, they required the greatest resuscitation volume among all fluid types, especially in trauma patients. In patients with traumatic brain injury, saline and L-HES achieved lower mortality than albumin and balanced crystalloids; especially saline was significantly superior to iso-oncotic albumin (OR 0.55; 95% CI 0.35–0.87). Conclusions Our network meta-analysis found that balanced crystalloids and albumin decreased mortality more than L-HES and saline in sepsis patients; however, saline or L-HES was better than iso-oncotic albumin or balanced crystalloids in traumatic brain injury patients. Trial registration PROSPERO website, registration number: CRD42018115641).
Time course of traumatic neuroma development
This study was designed to characterize morphologic stages during neuroma development post amputation with an eye toward developing better treatment strategies that intervene before neuromas are fully formed. Right forelimbs of 30 Sprague Dawley rats were amputated and limb stumps were collected at 3, 7, 28, 60 and 90 Days Post Amputation (DPA). Morphology of newly formed nerves and neuromas were assessed via general histology and neurofilament protein antibody staining. Analysis revealed six morphological characteristics during nerve and neuroma development; 1) normal nerve, 2) degenerating axons, 3) axonal sprouts, 4) unorganized bundles of axons, 5) unorganized axon growth into muscles, and 6) unorganized axon growth into fibrotic tissue (neuroma). At early stages (3 & 7 DPA) after amputation, normal nerves could be identified throughout the limb stump and small areas of axonal sprouts were present near the site of injury. Signs of degenerating axons were evident from 7 to 90 DPA. From day 28 on, variability of nerve characteristics with signs of unorganized axon growth into muscle and fibrotic tissue and neuroma formation became visible in multiple areas of stump tissue. These pathological features became more evident on days 60 and 90. At 90 DPA frank neuroma formation was present in all stump tissue. By following nerve regrowth and neuroma formation after amputation we were able to identify 6 separate histological stages of nerve regrowth and neuroma development. Axonal regrowth was observed as early as 3 DPA and signs of unorganized axonal growth and neuroma formation were evident by 28 DPA. Based on these observations we speculate that neuroma treatment and or prevention strategies might be more successful if targeted at the initial stages of development and not after 28 DPA.