Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
77,399
result(s) for
"X ray diffraction"
Sort by:
Progress and Opportunities in the Characterization of Cellulose – An Important Regulator of Cell Wall Growth and Mechanics
2019
The plant cell wall is a dynamic network of several biopolymers and structural proteins including cellulose, pectin, hemicellulose and lignin. Cellulose is one of the main load bearing components of this complex, heterogeneous structure, and in this way, is an important regulator of cell wall growth and mechanics. Glucan chains of cellulose aggregate via hydrogen bonds and van der Waals forces to form long thread-like crystalline structures called cellulose microfibrils. The shape, size, and crystallinity of these microfibrils are important structural parameters that influence mechanical properties of the cell wall and these parameters are likely important determinants of cell wall digestibility for biofuel conversion. Cellulose-cellulose and cellulose-matrix interactions also contribute to the regulation of the mechanics and growth of the cell wall. As a consequence, much emphasis has been placed on extracting valuable structural details about cell wall components from several techniques, either individually or in combination, including diffraction/scattering, microscopy, and spectroscopy. In this review, we describe efforts to characterize the organization of cellulose in plant cell walls. X-ray scattering reveals the size and orientation of microfibrils; diffraction reveals unit lattice parameters and crystallinity. The presence of different cell wall components, their physical and chemical states, and their alignment and orientation have been identified by Infrared, Raman, Nuclear Magnetic Resonance, and Sum Frequency Generation spectroscopy. Direct visualization of cell wall components, their network-like structure, and interactions between different components has also been made possible through a host of microscopic imaging techniques including scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. This review highlights advantages and limitations of different analytical techniques for characterizing cellulose structure and its interaction with other wall polymers. We also delineate emerging opportunities for future developments of structural characterization tools and multi-modal analyses of cellulose and plant cell walls. Ultimately, elucidation of the structure of plant cell walls across multiple length scales will be imperative for establishing structure-property relationships to link cell wall structure to control of growth and mechanics.
Journal Article
The CirPAD, a circular 1.4 M hybrid pixel detector dedicated to X‐ray diffraction measurements at Synchrotron SOLEIL
by
Bompard, Frédéric
,
Réguer, Solenn
,
Alves, Filipe
in
2D X‐ray diffraction imaging
,
Arrays
,
CirPAD
2022
One of the challenges of all synchrotron facilities is to offer the highest performance detectors for all their specific experiments, in particular for X‐ray diffraction imaging and its high throughput data collection. In that context, the DiffAbs beamline, the Detectors and the Design and Engineering groups at Synchrotron SOLEIL, in collaboration with ImXPAD and Cegitek companies, have developed an original and unique detector with a circular shape. This detector is based on the hybrid pixel photon‐counting technology and consists of the specific assembly of 20 hybrid pixel array detector (XPAD) modules. This article aims to demonstrate the main characteristics of the CirPAD (for Circular Pixel Array Detector) and its performance – i.e. excellent pixel quality, flat‐field correction, high‐count‐rate performance, etc. Additionally, the powder X‐ray diffraction pattern of an LaB6 reference sample is presented and refined. The obtained results demonstrate the high quality of the data recorded from the CirPAD, which allows the proposal of its use to all scientific communities interested in performing experiments at the DiffAbs beamline. The DiffAbs beamline, the Detectors and the Design and Engineering groups at Synchrotron SOLEIL, in collaboration with ImXPAD and Cegitek companies, have developed an original and unique detector with a circular shape. This detector is based on the hybrid pixel photon‐counting technology and consists of the specific assembly of 20 hybrid pixel array detector (XPAD) modules.
Journal Article
MuscleX‐DI: an integrated data analysis package for X‐ray scanning diffraction imaging experiments
by
Jiratrakanvong, Jiranun
,
Nabon, Jules
,
Agam, Gady
in
Animals
,
Data Analysis
,
Diffraction patterns
2026
X‐ray scanning diffraction can be used to raster‐scan tissues to elucidate structural organization and other physical properties. A comprehensive data analysis package targeted to take raster X‐ray diffraction (XRD) scans is vital in integrating data at multiple length and resolution scales. MuscleX‐DI is an open‐source software suite designed for the analysis and visualization of scanning XRD data. Developed in Python and compatible with multiple operating systems, MuscleX‐DI provides an end‐to‐end pipeline for processing diffraction patterns and generating 2D visualizations of calculated measurements. The software supports both a graphical user interface and a command‐line interface, offering tools for calibration, masking, azimuthal and radial integration, and heatmap generation. By streamlining the analysis of large XRD datasets, MuscleX‐DI facilitates the extraction of structural information from heterogeneous samples, enabling new insights into tissue architecture and biomolecular organization. The scanning diffraction methodology can be applied to study complex tissues and assemblies at various length scales. Example applications include characterizing myelin organization in brain tissue and observing improved drug availability in tumors when used with ECM‐degrading enzymes. MuscleX‐Diffraction Imaging (MuscleX‐DI) is an integrated, open‐source software suite for data reduction and visualization of scanning X‐ray diffraction (XRD) experiments. It is developed in Python and runs on Linux, Microsoft Windows or macOS. MuscleX‐DI offers an end‐to‐end software analysis pipeline that ingests diffraction patterns and raster scan parameters to generate 2D visualizations of various calculated measurements from raw XRD patterns. Modules can be run via a graphical user interface or in a `headless mode' from the command line. We provide an overview of the general structure of the MuscleX‐DI software package.
Journal Article
Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale Crater, Mars
2018
Crystal chemical algorithms were used to estimate the chemical composition of selected mineral phases observed with the CheMin X-ray diffractometer onboard the NASA Curiosity rover in Gale crater, Mars. The sampled materials include two wind-blown soils, Rocknest and Gobabeb, six mudstones in the Yellowknife Bay formation (John Klein and Cumberland) and the Murray formation (Confidence Hills, Mojave2, and Telegraph Peak), as well as five sandstones, Windjana and the samples of the unaltered Stimson formation (Big Sky and Okoruso) and the altered Stimson formation (Greenhorn and Lubango). The major mineral phases observed with the CheMin instrument in the Gale crater include plagioclase, sanidine, P21/c and C2/c clinopyroxene, orthopyroxene, olivine, spinel, and alunite-jarosite group minerals. The plagioclase analyzed with CheMin has an overall estimated average of An40(11) with a range of An30(8) to An63(6). The soil samples, Rocknest and Gobabeb, have an average of An56(8) while the Murray, Yellowknife Bay, unaltered Stimson, and altered Stimson formations have averages of An38(2), An37(5), An45(7), and An35(6), respectively. Alkali feldspar, specifically sanidine, average composition is Or74(17) with fully disordered Al/Si. Sanidine is most abundant in the Wind-jana sample (∼26 wt% of the crystalline material) and is fully disordered with a composition of Or87(5). The P21/c clinopyroxene pigeonite observed in Gale crater has a broad compositional range {[Mg0.95(12)-1.54(17)Fe0.18(17)-1.03(9)Ca0.00-0.28(6)]Σ2Si2O6} with an overall average of Mg1.18(19)Fe0.72(7)Ca0.10(9)Si2O6. The soils have the lowest Mg and highest Fe compositions [Mg0.95(5)Fe1.02(7)Ca0.03(4)Si2O6] of all of the Gale samples. Of the remaining samples, those of the Stimson formation exhibit the highest Mg and lowest Fe [average = Mg1.45(7)Fe0.35(13)Ca0.19(6)Si2O6]. Augite, C2/c clinopyroxene, is detected in just three samples, the soil samples [average = Mg0.92(5)Ca0.72(2)Fe0.36(5)Si2O6] and Windjana (Mg1.03(7)Ca0.75(4)Fe0.21(9)Si2O6). Orthopyroxene was not detected in the soil samples and has an overall average composition of Mg0.79(6)Fe1.20(6)Ca0.01(2)Si2O6 and a range of [Mg0.69(7)-0.86(20)Fe1.14(20)-1.31(7)Ca0.00-0.04(4)]Σ2Si2O6, with Big Sky exhibiting the lowest Mg content [Mg0.69(7)Fe1.31(7)Si2O6] and Okoruso exhibiting the highest [Mg0.86(20)Fe1.14(20)Si2O6]. Appreciable olivine was observed in only three of the Gale crater samples, the soils and Windjana. Assuming no Mn or Ca, the olivine has an average composition of Mg1.19(12)Fe0.81(12)SiO4 with a range of 1.08(3) to 1.45(7) Mg apfu. The soil samples [average = Mg1.11(4)Fe0.89SiO4] are significantly less magnesian than Windjana [Mg1.35(7)Fe0.65(7)SiO4]. We assume magnetite (Fe3O4) is cation-deficient (Fe3-x∎xO4) in Gale crater samples [average = Fe2.83(5)∎0.14O4; range 2.75(5) to 2.90(5) Fe apfu], but we also report other plausible cation substitutions such as Al, Mg, and Cr that would yield equivalent unit-cell parameters. Assuming cation-deficient magnetite, the Murray formation [average = Fe2.77(2)∎0.23O4] is noticeably more cation-deficient than the other Gale samples analyzed by CheMin. Note that despite the presence of Ti-rich magnetite in martian meteorites, the unit-cell parameters of Gale magnetite do not permit significant Ti substitution. Abundant jarosite is found in only one sample, Mojave2; its estimated composition is (K0.51(12)Na0.49)(Fe2.68(7)Al0.32)(SO4)2(OH)6. In addition to providing composition and abundances of the crystalline phases, we calculate the lower limit of the abundance of X-ray amorphous material and the composition thereof for each of the samples analyzed with CheMin. Each of the CheMin samples had a significant proportion of amorphous SiO2, except Windjana that has 3.6 wt% SiO2. Excluding Windjana, the amorphous materials have an SiO2 range of 24.1 to 75.9 wt% and an average of 47.6 wt%. Windjana has the highest FeOT (total Fe content calculated as FeO) at 43.1 wt%, but most of the CheMin samples also contain appreciable Fe, with an average of 16.8 wt%. With the exception of the altered Stimson formation samples, Greenhorn and Lubango, the majority of the observed SO3 is concentrated in the amorphous component (average = 11.6 wt%). Furthermore, we provide average amorphous-component compositions for the soils and the Mount Sharp group formations, as well as the limiting element for each CheMin sample.
Journal Article
Design and application of an electrochemical cell for operando X‐ray diffraction and absorption studies for electrocatalysts
2025
The development of advanced catalysts for various electrochemical reactions necessitates precise characterization of their structure and dynamic evolution. This study introduces an innovative electrochemical cell tailored for operando X‐ray characterizations, including X‐ray diffraction (XRD) and X‐ray absorption fine structure (XAFS). The cell features an adjustable aqueous electrolyte window to reduce X‐ray signal absorption and an integrated flow system for efficient removal of gas products. This design enables simultaneous XRD and XAFS measurements in both fluorescence and transmission modes. Using LiCoO2 as a model oxygen evolution reaction catalyst, operando measurements reveal structural transformations during the reaction. This device will aid in the exploration of catalyst mechanisms and the development of high‐performance catalysts. An innovative electrochemical cell is introduced, optimized for in situ X‐ray diffraction and X‐ray absorption spectroscopy studies of electrocatalysts, featuring an adjustable aqueous electrolyte window to minimize X‐ray absorption and a flow system for efficient gas product removal during operando testing.
Journal Article
In situ and real-time monitoring of mechanochemical milling reactions using synchrotron X-ray diffraction
by
Halasz, Ivan
,
Kimber, Simon A J
,
Belenguer, Ana M
in
639/638/11/879
,
639/638/224
,
639/638/549
2013
We describe the only currently available protocol for
in situ
, real-time monitoring of mechanochemical reactions and intermediates by X-ray powder diffraction. Although mechanochemical reactions (inducing transformations by mechanical forces such as grinding and milling) are normally performed in commercially available milling assemblies, such equipment does not permit direct reaction monitoring. We now describe the design and in-house modification of milling equipment that allows the reaction jars of the operating mill to be placed in the path of a high-energy (∼90 keV) synchrotron X-ray beam while the reaction is taking place. Resulting data are analyzed using conventional software, such as TOPAS. Reaction intermediates and products are identified using the Cambridge Structural Database or Inorganic Crystal Structure Database. Reactions are analyzed by fitting the time-resolved diffractograms using structureless Pawley refinement for crystalline phases that are not fully structurally characterized (such as porous frameworks with disordered guests), or the Rietveld method for solids with fully determined crystal structures (metal oxides, coordination polymers).
Journal Article
Quantitative biological imaging by ptychographic x-ray diffraction microscopy
by
Salditt, Tim
,
Kewish, Cameron M
,
Beerlink, André
in
Algorithms
,
Atoms & subatomic particles
,
Bacteria
2010
Recent advances in coherent x-ray diffractive imaging have paved the way to reliable and quantitative imaging of noncompact specimens at the nanometer scale. Introduced a year ago, an advanced implementation of ptychographic coherent diffractive imaging has removed much of the previous limitations regarding sample preparation and illumination conditions. Here, we apply this recent approach toward structure determination at the nanoscale to biological microscopy. We show that the projected electron density of unstained and unsliced freeze-dried cells of the bacterium Deinococcus radiodurans can be derived from the reconstructed phase in a straightforward and reproducible way, with quantified and small errors. Thus, the approach may contribute in the future to the understanding of the highly disputed nucleoid structure of bacterial cells. In the present study, the estimated resolution for the cells was 85 nm (half-period length), whereas 50-nm resolution was demonstrated for lithographic test structures. With respect to the diameter of the pinhole used to illuminate the samples, a superresolution of about 15 was achieved for the cells and 30 for the test structures, respectively. These values should be assessed in view of the low dose applied on the order of [similar, equals]1.3·10⁵ Gy, and were shown to scale with photon fluence.
Journal Article
Biological Imaging by Soft X-ray Diffraction Microscopy
2005
We have used the method of x-ray diffraction microscopy to image the complex-valued exit wave of an intact and unstained yeast cell. The images of the freeze-dried cell, obtained by using 750-eV x-rays from different angular orientations, portray several of the cell's major internal components to 30-nm resolution. The good agreement among the independently recovered structures demonstrates the accuracy of the imaging technique. To obtain the best possible reconstructions, we have implemented procedures for handling noisy and incomplete diffraction data, and we propose a method for determining the reconstructed resolution. This work represents a previously uncharacterized application of x-ray diffraction microscopy to a specimen of this complexity and provides confidence in the feasibility of the ultimate goal of imaging biological specimens at 10-nm resolution in three dimensions.
Journal Article
Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy
by
Ishikawa, Tetsuya
,
Chen, Chien-Chun
,
Lu, Chien-Hung
in
Algorithms
,
Biological Sciences
,
cell nucleolus
2010
Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3—5 nm, but is only applicable to thin or sectioned speciments. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50—60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5—10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.
Journal Article