Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
9,149
result(s) for
"X-ray binary"
Sort by:
Observatory science with eXTP
by
Różańska, Agata
,
Xiong, ShaoLin
,
Del Santo, Melania
in
Active galactic nuclei
,
Astronomy
,
Astrophysics
2019
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry (eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
Journal Article
Image Deconvolution to Resolve Astronomical X-Ray Sources in Close Proximity: The NuSTAR Images of SXP 15.3 and SXP 305
by
Bhattacharya, Sayantan
,
Christodoulou, Dimitris M.
,
Laycock, Silas G. T.
in
Algorithms
,
Deconvolution
,
image deconvolution
2025
The broad point spread function of the NuSTAR telescope makes resolving astronomical X-ray sources a challenging task, especially for off-axis observations. This limitation has affected the observations of the high-mass X-ray binary pulsars SXP 15.3 and SXP 305, in which pulsations are detected from nearly overlapping regions without spatially resolving these X-ray sources. To address this issue, we introduce a deconvolution algorithm designed to enhance NuSTAR’s spatial resolution for closely spaced X-ray sources. We apply this technique to archival data and simulations of synthetic point sources placed at varying separations and locations, testing the algorithm’s efficacy in source detection and differentiation. Our study confirms that on some occasions when SXP 305 is brighter, SXP 15.3 is also resolved, suggesting that some prior non-detections may have resulted from imaging limitations. This deconvolution technique represents a proof of concept test for analyzing crowded fields in the sky with closely spaced X-ray sources in future NuSTAR observations.
Journal Article
IXPE View of BH XRBs during the First 2.5 Years of the Mission
by
Svoboda, Jiří
,
Kaaret, Philip
,
Krawczynski, Henric
in
Accretion disks
,
Astronomical models
,
Astronomical research
2024
Accreting stellar-mass black holes represent unique laboratories for studying matter and radiation under the influence of extreme gravity. They are highly variable sources going through different accretion states, showing various components in their X-ray spectra from the thermal emission of the accretion disc dominating in the soft state to the up-scattered Comptonisation component from an X-ray corona in the hard state. X-ray polarisation measurements are particularly sensitive to the geometry of the X-ray scatterings and can thus constrain the orientation and relative positions of the innermost components of these systems. The IXPE mission has observed about a dozen stellar-mass black holes with masses up to 20 solar masses in X-ray binaries with different orientations and in various accretion states. The low-inclination sources in soft states have shown a low fraction of polarisation. On the other hand, several sources in soft and hard states have revealed X-ray polarisation higher than expected, which poses significant challenges for theoretical interpretation, with 4U 1630–47 being one of the most puzzling sources. IXPE has measured the spin of three black holes via the measurement of their polarisation properties in the soft emission state. In each of the three cases, the new results agree with the constraints from the spectral observations. The polarisation observations of the black hole X-ray transient Swift J1727.8–1613 across its entire outburst has revealed that the soft-state polarisation is much weaker than the hard-state polarisation. Remarkably, the observations furthermore show that the polarisation of the bright hard state and that of the 100 times less luminous dim hard state are identical within the accuracy of the measurement. For sources with a radio jet, the electric field polarisation tends to align with the radio jet, indicating the equatorial geometry of the X-ray corona, e.g., in the case of Cyg X–1. In the unique case of Cyg X–3, where the polarisation is perpendicular to the radio jet, the IXPE observations reveal the presence and geometry of obscuring material hiding this object from our direct view. The polarisation measurements acquired by the IXPE mission during its first 2.5 years have provided unprecedented insights into the geometry and physical processes of accreting stellar-mass black holes, challenging existing theoretical models and offering new avenues for understanding these extreme systems.
Journal Article
Stellar Wind Parameters of Massive Stars in Accretion-Powered High-Mass X-Ray Binary Pulsars
by
Beskrovnaya, Nina
,
Kim, Vitaliy
,
Ikhsanov, Nazar
in
accretion
,
Approximation
,
Astronomical research
2025
The process of mass exchange between the components of High-Mass X-ray Binary (HMXB) systems with neutron stars undergoing wind-fed accretion is discussed. The X-ray luminosity of these systems allows us to evaluate the mass capture rate by the neutron star from the stellar wind of its massive companion and set limits on the relative velocity between the neutron star and the wind. We found that the upper limit to the wind velocity in the orbital plane during the high state of the X-ray source is in the range of 120–1000 kms−1, which is by a factor of 2–4 lower than both the terminal wind velocity and the speed of the wind flowing out from the polar regions of massive stars for all the objects under investigation. This finding is valid not only for the systems with Be stars, but also for the systems in which the optical components do not exhibit the Be phenomenon. We also show that the lower limit to the radial wind velocity in these systems can unlikely be smaller than a few percent of the orbital velocity of the neutron star. This provides us with a new constraint on the mass transfer process in the outflowing disks of Be-type stars.
Journal Article
Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1
2011
Because of their inherently high flux allowing the detection of clear signals, black hole x-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the International Gamma-Ray Astrophysics Laboratory Imager on Board the Integral Satellite (INTEGRAL/IBIS) telescope. Spectral modeling of the data reveals two emission mechanisms: The 250- to 400-keV (kilo-electron volt) data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400-keV to 2-MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.
Journal Article
Lower twin peak quasiperiodic oscillation coherence across luminosity and the tidal stretching time-scale
2024
In this manuscript we pursue tidal disruption of magnetically confined clumps of matter as candidate to interpret the twin peak high-frequency quasiperiodic oscillations (HF QPOs) seen in low-mass x-ray binaries (LMXBs). In previews works we have proposed the upper HF QPO seen in neutron star (NS) LMXBs be linked to the energy released during tidal circularization of relativistic orbits. The lower HF QPO instead might come from the energy released during spiraling and tidal stretching of the clump. The observed behavior of the coherence Q of the lower HF QPO was related to both the tidal stretching time-scale of the clump along the orbit and the number of turns clumps make before reaching the innermost stable bound orbit. In this paper we focus on the maximum value of Q across LMXBs spanning two orders of magnitudes in luminosity. We show the Qmax behavior of the lower HF QPO seen across LMXBs luminosity might be related to tidal stretching time-scale as well, giving an estimate of the magnetic field in the plasma.
Journal Article
Discovery of Very High Energy Gamma Rays Associated with an X-ray Binary
by
McComb, T. J. L
,
Wagner, S. J
,
Aharonian, F
in
Astronomy
,
Binary and multiple stars
,
Binary stars
2005
X-ray binaries are composed of a normal star in orbit around a neutron star or stellar-mass black hole. Radio and x-ray observations have led to the presumption that some x-ray binaries called microquasars behave as scaled-down active galactic nuclei. Microquasars have resolved radio emission that is thought to arise from a relativistic outflow akin to active galactic nuclei jets, in which particles can be accelerated to large energies. Very high energy [gamma]-rays produced by the interactions of these particles have been observed from several active galactic nuclei. Using the High Energy Stereoscopic System, we find evidence for gamma-ray emission of >100 gigaelectron volts from a candidate microquasar, LS 5039, showing that particles are also accelerated to very high energies in these systems.
Journal Article
High-Mass X-ray Binaries: progenitors of double compact objects
2018
A summary is given of the present state of our knowledge of High-Mass X-ray Binaries (HMXBs), their formation and expected future evolution. Among the HMXB-systems that contain neutron stars, only those that have orbital periods upwards of one year will survive the Common-Envelope (CE) evolution that follows the HMXB phase. These systems may produce close double neutron stars with eccentric orbits. The HMXBs that contain black holes do not necessarily evolve into a CE phase. Systems with relatively short orbital periods will evolve by stable Roche-lobe overflow to short-period Wolf-Rayet (WR) X-ray binaries containing a black hole. Two other ways for the formation of WR X-ray binaries with black holes are identified: CE-evolution of wide HMXBs and homogeneous evolution of very close systems. In all three cases, the final product of the WR X-ray binary will be a double black hole or a black hole neutron star binary.
Journal Article
High energy neutrino and gamma-ray emissions from the jets of M33 X-7 microquasar
by
Kosmas, T S
,
Papadopoulos, D A
,
Papavasileiou, Th V
in
Algorithms
,
astrophysical outflows
,
Energy spectra
2021
In this work, after testing the reliability of our algorithms through numerical simulations on the well-studied SS 433 Galactic microquasar, we focus on neutrino and γ-ray emissions from the extragalactic M33 X-7 system. This is a recently discovered X-ray binary system located in the neighbouring galaxy Messier 33 which has not yet been modelled in detail. The neutrino and γ-ray energy spectra, produced from the magnetized astrophysical jet of M33 X-7, in the context of our method are assumed to originate from the decay (and scattering) processes taking place among the secondary particles produced assuming that, first, hot (relativistic) protons of the jet scatter on thermal ones (p-p interaction mechanism).
Journal Article
Tracing Black Hole Signatures in Several Black Hole Candidates Based on Their X-Ray Spectral Evolution
by
Vierdayanti, Kiki
,
Alfarizki, Fahmi Iman
in
Binary stars
,
black hole binary
,
black hole candidates
2020
Investigation of spectral evolution of four black hole candidates was carried out by using color-color diagram as well as spectral fitting on Swift/ XRT data. Newly found candidates, which are classified as low-mass X-ray binary system based on their transient nature, are the focus of our work. We compare their spectral evolutions to that of XTE J1752-223, a transient system and a more convincing black hole candidate whose mass has been determined from spectral-timing correlation scaling. In addition, comparison to Cygnus X-1, a well-known stellar-mass black hole, was done despite its persistent nature. The spectral fitting, by using a combination of thermal disk and non-thermal component model, results in the innermost temperature values in the range of the typical innermost temperature of black hole binary which is 0.7 – 1.5 keV. The spectral evolutions of the candidates bear a resemblance to both Cygnus X-1 and XTE J1752-223. We note that during Swift /XRT observations, the spectra of Cygnus X-1 and IGR J17451-3022 are mostly dominated by the non- thermal component. We conclude that the compact object of MAXI J1535- 571 and MAXI J1828-249 is highly likely to be a black hole. However, the lack of data rendered conclusive result impossible for IGR J17454-2919.
Journal Article