Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,715 result(s) for "X-ray microtomography"
Sort by:
Visualization of xylem embolism by X-ray microtomography
X-ray microtomography (microCT) is becoming a valuable noninvasive tool for advancing our understanding of plant–water relations. Laboratory-based microCT systems are becoming more affordable and provide better access than synchrotron facilities. However, some systems come at the cost of comparably lower signal quality and spatial resolution than synchrotron facilities. In this study, we evaluated laboratory-based X-ray microCT imaging as a tool to nondestructively analyse hydraulic vulnerability to drought-induced embolism in a woody plant species. We analysed the vulnerability to drought-induced embolism of benchtop-dehydrated Eucalyptus camaldulensis plants using microCT and hydraulic flow measurements on the same sample material, allowing us to directly compare the two methods. Additionally, we developed a quantitative procedure to improve microCT image analysis at limited resolution and accurately measure vessel lumens. Hydraulic measurements matched closely with microCT imaging of the current-year growth ring, with similar hydraulic conductivity and loss of conductivity due to xylem embolism. Optimized thresholding of vessel lumens during image analysis, based on a physiologically meaningful parameter (theoretical conductivity), allowed us to overcome common potential constraints of some lab-based systems. Our results indicate that estimates of vulnerability to embolism provided by microCT visualization agree well with those obtained from hydraulic measurements on the same sample material.
Water uptake can occur through woody portions of roots and facilitates localized embolism repair in grapevine
Water acquisition is thought to be limited to the unsuberized surface located close to root tips. However, there are recurring periods when the unsuberized surfaces are limited in woody root systems, and radial water uptake across the bark of woody roots might play an important physiological role in hydraulic functioning. Using X-ray microcomputed tomography (microCT) and hydraulic conductivity measurements (Lp r), we examined water uptake capacity of suberized woody roots in vivo and in excised samples. Bark hydration in grapevine woody roots occurred quickly upon exposure to water (c. 4 h). Lp r measurements through the bark of woody roots showed that it is permeable to water and becomes more so upon wetting. After bark hydration, microCT analysis showed that absorbed water was utilized to remove embolism locally, where c. 20% of root xylem vessels refilled completely within 15 h. Embolism removal did not occur in control roots without water. Water uptake through the bark of woody roots probably plays an important role when unsuberized tissue is scarce/absent, and would be particularly relevant following large irrigation events or in late winter when soils are saturated, re-establishing hydraulic functionality before bud break.
X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance
Drought-induced xylem embolism is a serious threat to plant survival under future climate scenarios. Hence, accurate quantification of species-specific vulnerability to xylem embolism is a key to predict the impact of climate change on vegetation. Low-cost hydraulic measurements of embolism rate have been suggested to be prone to artefacts, thus requiring validation by direct visualization of the functional status of xylem conduits using nondestructive imaging techniques, such as X-ray microtomography (microCT). We measured the percentage loss of conductance (PLC) of excised stems of Laurus nobilis (laurel) dehydrated to different xylem pressures, and compared results with direct observation of gas-filled vs water-filled conduits at a synchrotron-based microCT facility using a phase contrast imaging modality. Theoretical PLC calculated on the basis of microCT observations in stems of laurel dehydrated to different xylem pressures overall were in agreement with hydraulic measurements, revealing that this species suffers a 50% loss of xylem hydraulic conductance at xylem pressures averaging −3.5 MPa. Our data support the validity of estimates of xylem vulnerability to embolism based on classical hydraulic techniques. We discuss possible causes of discrepancies between data gathered in this study and those of recent independent reports on laurel hydraulics.
Virtual histology of archaeological human deciduous prenatal enamel through synchrotron X‐ray computed microtomography images
Virtual histology is increasingly utilized to reconstruct the cell mechanisms underlying dental morphology for fragile fossils when physical thin sections are not permitted. Yet, the comparability of data derived from virtual and physical thin sections is rarely tested. Here, the results from archaeological human deciduous incisor physical sections are compared with virtual ones obtained by phase‐contrast synchrotron radiation computed microtomography (SRµCT) of intact specimens using a multi‐scale approach. Moreover, virtual prenatal daily enamel secretion rates are compared with those calculated from physical thin sections of the same tooth class from the same archaeological skeletal series. Results showed overall good visibility of the enamel microstructures in the virtual sections which are comparable to that of physical ones. The highest spatial resolution SRµCT setting (effective pixel size = 0.9 µm) produced daily secretion rates that matched those calculated from physical sections. Rates obtained using the lowest spatial resolution setup (effective pixel size = 2.0 µm) were higher than those obtained from physical sections. The results demonstrate that virtual histology can be applied to the investigated samples to obtain reliable and quantitative measurements of prenatal daily enamel secretion rates. The implementation of synchrotron radiation X‐ray microtomography for non‐destructive visualization of the dental prenatal enamel microstructure of intact archaeological human deciduous teeth is presented and compared with the physical thin‐sectioning of the same archaeological dental series. Prenatal daily enamel secretion rates, i.e. the distance between two adjacent daily enamel microstructures, have been measured with the two approaches. Results show a good agreement between physical and virtual histology.
Diagnostic validity of early proximal caries detection using near-infrared imaging technology on 3D range data of posterior teeth
ObjectivesThis in vitro study analysed potential of early proximal caries detection using 3D range data of teeth consisting of near-infrared reflection images at 850 nm (NIRR).Materials and methodsTwo hundred fifty healthy and carious permanent human teeth were arranged pairwise, examined with bitewing radiography (BWR) and NIRR and validated with micro-computed tomography. NIRR findings were evaluated from buccal, lingual and occlusal (trilateral) views according to yes/no decisions about presence of caries. Reliability assessments included kappa statistics and revealed high agreement for both methods. Statistical analysis included cross tabulation and calculation of sensitivity, specificity and AUC.ResultsUnderestimation of caries was 24.8% for NIRR and 26.4% for BWR. Overestimation was 10.4% for occlusal NIRR and 0% for BWR. Trilateral NIRR had overall accuracy of 64.8%, overestimation of 15.6% and underestimation of 19.6%. NIRR and BWR showed high specificity and low sensitivity for proximal caries detection.ConclusionsNIRR achieved diagnostic results comparable to BWR. Trilateral NIRR assessments overestimated presence of proximal caries, revealing stronger sensitivity for initial caries detection than BWR.Clinical relevanceNIRR provided valid complement to BWR as diagnostic instrument. Investigation from multiple angles did not substantially improve proximal caries detection with NIRR.
Enhancement of early proximal caries annotations in radiographs: introducing the Diagnostic Insights for Radiographic Early-caries with micro-CT (ACTA-DIRECT) dataset
Background Proximal caries datasets for training artificial intelligence (AI) algorithms commonly include clinician-annotated radiographs. These conventional annotations are susceptible to observer variability, and early caries may be missed. Micro-computed tomography (CT), while not feasible in clinical applications, offers a more accurate imaging modality to support the creation of a reference-standard dataset for caries annotations. Herein, we present the Academic Center for Dentistry Amsterdam—Diagnostic Insights for Radiographic Early-caries with micro-CT (ACTA-DIRECT) dataset, which is the first dataset pairing dental radiographs and micro-CT scans to enable higher-quality annotations. Methods The ACTA-DIRECT dataset encompasses 179 paired micro-CT scans and radiographs of early proximal carious teeth, along with three types of annotations: conventional annotations on radiographs, micro-CT-assisted annotations on radiographs, and micro-CT annotations (reference standard). Three dentists independently annotated proximal caries on radiographs, both with and without micro-CT assistance, enabling determinations of interobserver agreement and diagnostic accuracy. To establish a reference standard, one dental radiologist annotated all caries on the related micro-CT scans. Results Micro-CT support improved interobserver agreement (Cohen’s Kappa), averaging 0.64 (95% confidence interval [CI]: 0.59–0.68) versus 0.46 (95% CI: 0.44–0.48) in its absence. Likewise, average sensitivity and specificity increased from 42% (95% CI: 34–51%) to 63% (95% CI: 54–71%) and from 92% (95% CI: 88–95%) to 95% (95% CI: 92–97%), respectively. Conclusion The ACTA-DIRECT dataset offers high-quality images and annotations to support AI-based early caries diagnostics for training and validation. This study underscores the benefits of incorporating micro-CT scans in lesion assessments, providing enhanced precision and reliability. Graphical Abstract
Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging
Purpose A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Methods Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. Results A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n  = 3). Conclusions The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.
Ultracompact 3D microfluidics for time-resolved structural biology
To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s −1 , which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering. There is a need for more robust sample delivery methods for serial crystallography. Here the authors present the design and characterization of ultracompact 3D microfluidic devices that can be printed, which require less sample, have a lower background signal and allow 3D mixing for time resolved experiments.
Composition and metabolism of microbial communities in soil pores
Delineation of microbial habitats within the soil matrix and characterization of their environments and metabolic processes are crucial to understand soil functioning, yet their experimental identification remains persistently limited. We combined single- and triple-energy X-ray computed microtomography with pore specific allocation of 13 C labeled glucose and subsequent stable isotope probing to demonstrate how long-term disparities in vegetation history modify spatial distribution patterns of soil pore and particulate organic matter drivers of microbial habitats, and to probe bacterial communities populating such habitats. Here we show striking differences between large (30-150 µm Ø) and small (4-10 µm Ø) soil pores in (i) microbial diversity, composition, and life-strategies, (ii) responses to added substrate, (iii) metabolic pathways, and (iv) the processing and fate of labile C. We propose a microbial habitat classification concept based on biogeochemical mechanisms and localization of soil processes and also suggests interventions to mitigate the environmental consequences of agricultural management. The work proposes the concept of distinct micro-habitats within an intact soil matrix and describes composition and metabolic pathways of their bacterial inhabitants, as a first step towards a generalizable C processing-focused classification of soil micro-environmental conditions.
ForMAX – a beamline for multiscale and multimodal structural characterization of hierarchical materials
The ForMAX beamline at the MAX IV Laboratory provides multiscale and multimodal structural characterization of hierarchical materials in the nanometre to millimetre range by combining small‐ and wide‐angle X‐ray scattering with full‐field microtomography. The modular design of the beamline is optimized for easy switching between different experimental modalities. The beamline has a special focus on the development of novel fibrous materials from forest resources, but it is also well suited for studies within, for example, food science and biomedical research. ForMAX is a new beamline at the MAX IV Laboratory, providing multiscale and multimodal structural characterization by combining small‐ and wide‐angle X‐ray scattering with full‐field tomographic imaging.