Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
95,043 result(s) for "X-ray tomography"
Sort by:
Implant Restorations
The fourth edition of Implant Restorations: A Step-by-Step Guide provides a wealth of updated and expanded coverage on detailed procedures for restoring dental implants. Focusing on the most common treatment scenarios, it offers concise literature reviews for each chapter and easy-to-follow descriptions of the techniques, along with high-quality clinical photographs demonstrating each step. Comprehensive throughout, this practical guide begins with introductory information on incorporating implant restorative dentistry in clinical practice. It covers diagnosis and treatment planning and digital dentistry, and addresses advances in cone beam computerized tomography (CBCT), treatment planning software, computer generated surgical guides, rapid prototype printing and impression-less implant restorative treatments, intra-oral scanning, laser sintering, and printing/milling polymer materials. Record-keeping, patient compliance, hygiene regimes, and follow-up are also covered. * Provides an accessible step-by-step guide to commonly encountered treatment scenarios, describing procedures and techniques in an easy-to-follow, highly illustrated format * Offers new chapters on diagnosis and treatment planning and digital dentistry * Covers advances in cone beam computerized tomography (CBCT), computer generated surgical guides, intra-oral scanning, laser sintering, and more An excellent and accessible guide on a burgeoning subject in modern dental practice by one of its most experienced clinicians, Implant Restorations: A Step-by-Step Guide, Fourth Edition will appeal to prosthodontists, general dentists, implant surgeons, dental students, dental assistants, hygienists, and dental laboratory technicians.
EANM procedure guidelines for brain PET imaging using 18FFDG, version 3
The present procedural guidelines summarize the current views of the EANM Neuro-Imaging Committee (NIC). The purpose of these guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting results of [18F]FDG-PET imaging of the brain. The aim is to help achieve a high-quality standard of [18F]FDG brain imaging and to further increase the diagnostic impact of this technique in neurological, neurosurgical, and psychiatric practice. The present document replaces a former version of the guidelines that have been published in 2009. These new guidelines include an update in the light of advances in PET technology such as the introduction of digital PET and hybrid PET/MR systems, advances in individual PET semiquantitative analysis, and current broadening clinical indications (e.g., for encephalitis and brain lymphoma). Further insight has also become available about hyperglycemia effects in patients who undergo brain [18F]FDG-PET. Accordingly, the patient preparation procedure has been updated. Finally, most typical brain patterns of metabolic changes are summarized for neurodegenerative diseases. The present guidelines are specifically intended to present information related to the European practice. The information provided should be taken in the context of local conditions and regulations.
International variation in radiation dose for computed tomography examinations: prospective cohort study
To determine patient, institution, and machine characteristics that contribute to variation in radiation doses used for computed tomography (CT). Prospective cohort study. Data were assembled and analyzed from the University of California San Francisco CT International Dose Registry. Standardized data from over 2.0 million CT examinations of adults who underwent CT between November 2015 and August 2017 from 151 institutions, across seven countries (Switzerland, Netherlands, Germany, United Kingdom, United States, Israel, and Japan). Mean effective doses and proportions of high dose examinations for abdomen, chest, combined chest and abdomen, and head CT were determined by patient characteristics (sex, age, and size), type of institution (trauma center, care provision 24 hours per day and seven days per week, academic, private), institutional practice volume, machine factors (manufacturer, model), country, and how scanners were used, before and after adjustment for patient characteristics, using hierarchical linear and logistic regression. High dose examinations were defined as CT scans with doses above the 75th percentile defined during a baseline period. The mean effective dose and proportion of high dose examinations varied substantially across institutions. The doses varied modestly (10-30%) by type of institution and machine characteristics after adjusting for patient characteristics. By contrast, even after adjusting for patient characteristics, wide variations in radiation doses across countries persisted, with a fourfold range in mean effective dose for abdomen CT examinations (7.0-25.7 mSv) and a 17-fold range in proportion of high dose examinations (4-69%). Similar variation across countries was observed for chest (mean effective dose 1.7-6.4 mSv, proportion of high dose examinations 1-26%) and combined chest and abdomen CT (10.0-37.9 mSv, 2-78%). Doses for head CT varied less (1.4-1.9 mSv, 8-27%). In multivariable models, the dose variation across countries was primarily attributable to institutional decisions regarding technical parameters (that is, how the scanners were used). CT protocols and radiation doses vary greatly across countries and are primarily attributable to local choices regarding technical parameters, rather than patient, institution, or machine characteristics. These findings suggest that the optimization of doses to a consistent standard should be possible. Clinicaltrials.gov NCT03000751.
2017 WSES guidelines on colon and rectal cancer emergencies: obstruction and perforation
ᅟ Obstruction and perforation due to colorectal cancer represent challenging matters in terms of diagnosis, life-saving strategies, obstruction resolution and oncologic challenge. The aims of the current paper are to update the previous WSES guidelines for the management of large bowel perforation and obstructive left colon carcinoma (OLCC) and to develop new guidelines on obstructive right colon carcinoma (ORCC). Methods The literature was extensively queried for focused publication until December 2017. Precise analysis and grading of the literature has been performed by a working group formed by a pool of experts: the statements and literature review were presented, discussed and voted at the Consensus Conference of the 4th Congress of the World Society of Emergency Surgery (WSES) held in Campinas in May 2017. Results CT scan is the best imaging technique to evaluate large bowel obstruction and perforation. For OLCC, self-expandable metallic stent (SEMS), when available, offers interesting advantages as compared to emergency surgery; however, the positioning of SEMS for surgically treatable causes carries some long-term oncologic disadvantages, which are still under analysis. In the context of emergency surgery, resection and primary anastomosis (RPA) is preferable to Hartmann’s procedure, whenever the characteristics of the patient and the surgeon are permissive. Right-sided loop colostomy is preferable in rectal cancer, when preoperative therapies are predicted. With regards to the treatment of ORCC, right colectomy represents the procedure of choice; alternatives, such as internal bypass and loop ileostomy, are of limited value. Clinical scenarios in the case of perforation might be dramatic, especially in case of free faecal peritonitis. The importance of an appropriate balance between life-saving surgical procedures and respect of oncologic caveats must be stressed. In selected cases, a damage control approach may be required. Medical treatments including appropriate fluid resuscitation, early antibiotic treatment and management of co-existing medical conditions according to international guidelines must be delivered to all patients at presentation. Conclusions The current guidelines offer an extensive overview of available evidence and a qualitative consensus regarding management of large bowel obstruction and perforation due to colorectal cancer.
Dark-field computed tomography reaches the human scale
X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms—beyond the presently used X-ray attenuation—offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure. One such approach is dark-field imaging, which has recently been introduced and already demonstrated significantly improved radiological benefit in small-animal models, especially for lung diseases. Until now, however, dark-field CT could not yet be translated to the human scale and has been restricted to benchtop and small-animal systems, with scan durations of several minutes or more. This is mainly because the adaption and upscaling to the mechanical complexity, speed, and size of a human CT scanner so far remained an unsolved challenge. Here, we now report the successful integration of a Talbot–Lau interferometer into a clinical CT gantry and present dark-field CT results of a human-sized anthropomorphic body phantom, reconstructed from a single rotation scan performed in 1 s. Moreover, we present our key hardware and software solutions to the previously unsolved road-blocks, which so far have kept dark-field CT from being translated from the optical bench into a rapidly rotating CT gantry, with all its associated challenges like vibrations, continuous rotation, and large field of view. This development enables clinical dark-field CT studies with human patients in the near future.
Diagnostic reference levels and median doses for common clinical indications of CT: findings from an international registry
Ob jectives The European Society of Radiology identified 10 common indications for computed tomography (CT) as part of the European Study on Clinical Diagnostic Reference Levels (DRLs, EUCLID), to help standardize radiation doses. The objective of this study is to generate DRLs and median doses for these indications using data from the UCSF CT International Dose Registry. Methods Standardized data on 3.7 million CTs in adults were collected between 2016 and 2019 from 161 institutions across seven countries (United States of America (US), Switzerland, Netherlands, Germany, UK, Israel, Japan). DRLs (75th percentile) and median doses for volumetric CT-dose index (CTDI vol ) and dose-length product (DLP) were assessed for each EUCLID category (chronic sinusitis, stroke, cervical spine trauma, coronary calcium scoring, lung cancer, pulmonary embolism, coronary CT angiography, hepatocellular carcinoma (HCC), colic/abdominal pain, appendicitis), and US radiation doses were compared with European. Results The number of CT scans within EUCLID categories ranged from 8,933 (HCC) to over 1.2 million (stroke). There was greater variation in dose between categories than within categories ( p  < .001), and doses were significantly different between categories within anatomic areas. DRLs and median doses were assessed for all categories. DRLs were higher in the US for 9 of the 10 indications (except chronic sinusitis) than in Europe but with a significantly higher sample size in the US. Conclusions DRLs for CTDI vol and DLP for EUCLID clinical indications from diverse organizations were established and can contribute to dose optimization. These values were usually significantly higher in the US than in Europe. Key Points • Registry data were used to create benchmarks for 10 common indications for CT identified by the European Society of Radiology. • Observed US radiation doses were higher than European for 9 of 10 indications (except chronic sinusitis). • The presented diagnostic reference levels and median doses highlight potentially unnecessary variation in radiation dose.
Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT
Objective To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Methods Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Results Correlation between measured and known iodine concentrations was excellent for both systems ( R  = 0.999–1.000, p  < 0.0001). For DSCT, median measurement errors ranged from −0.5% (IQR −2.0, 2.0%) at 150Sn/70 kVp and −2.3% (IQR −4.0, −0.1%) at 150Sn/80 kVp to −4.0% (IQR −6.0, −2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from −3.3% (IQR −4.9, −1.5%) at 140 kVp to −4.6% (IQR −6.0, −3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements ( p  < 0.05). Conclusion Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. Key Points • High - end CT scanners allow accurate iodine quantification using different DECT techniques . • Lowest measurement error was found in scans with largest photon energy separation . • Dual - source CT quantified iodine slightly more accurately than dual layer CT .
Clinical applications of photon counting detector CT
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. Key Points • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Measurement accuracy of CT systems: The importance of calibration phantoms
This study aims to evaluate the measurement accuracy of computed tomography (CT) systems, focusing on the necessity of using calibration phantoms for enhanced precision. Both clinical CT and micro-CT systems were evaluated using a specially designed two-ball phantom, which provides a reliable reference for spatial resolution and geometric accuracy. The study involved scanning the phantom with two micro-CT devices (the oversize micro-CT SkyScan 1173 and the high-resolution micro-CT SkyScan 1272) and a clinical CT device, a third-generation dual-source CT scanner (SOMATOM Force), measuring the distance between the centres of two ruby balls. The results showed significant differences in measurement accuracy between the devices. The high-resolution micro-CT provided the most consistent measurements with minimal variance, indicating its superiority in applications requiring high precision. In contrast, the oversize micro-CT exhibited larger errors, particularly at smaller voxel sizes, suggesting that internal calibration affected its accuracy. The dual source CT system had the smallest mean error but a larger standard deviation, indicating less consistency compared to micro-CT systems. Calibration with the two-ball phantom improved measurement accuracy across all devices. This improvement underscores the importance of using calibration phantoms to ensure accurate measurements, especially in fields that require high precision, such as clinical diagnostics and materials science. We concluded that routine calibration with phantoms is essential to achieve high measurement accuracy in CT imaging, thereby increasing the reliability of CT-based analyses in various disciplines.