Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
113
result(s) for
"XRPD"
Sort by:
Thermal behavior of mercury carboxylates as paintings’ degradation products
by
Bezdička, Petr
,
Barannikov, Ruslan
,
Hermans, Joen
in
Analytical Chemistry
,
Art works
,
Carboxylates
2024
Mercury long-chain carboxylates have been identified recently as degradation products resulting from saponification occurring in painted artworks. Saponification belongs among the degradation processes endangering undesirably the appearance and stability of painted artworks, significant treasures of humanity. The mechanism of saponification has not been still fully understood because of the enormous complexity of both painting materials and factors triggering the deterioration. Moreover, the properties and stability of metal soaps resulting from this degradation are also poorly understood, complicating the choice of suitable conservation treatment. Relining, a heat-based restoration technique for reinforcing deteriorated canvases, can induce irreversible changes in paint layers, being applied inappropriately. Within this study, we report thermal behavior and stability of mercury palmitate (Hg(C16)
2
), mercury stearate (Hg(C18)
2
), and their respective mixtures with linseed oil in the temperature range of 25–150 °C, employing a combination of techniques, including DSC, TG-MS, FTIR, XRPD, and in situ high-temperature FTIR and XRPD. It was observed that while Hg(C16)
2
and Hg(C18)
2
undergo partial decomposition around 150 °C, in a mixture with linseed oil, they decompose rapidly at significantly lower temperature (around 100 °C). The decomposition of mercury carboxylates results in the formation of metallic mercury, a volatile toxic substance, and free fatty acids, reactants capable of further development of saponification in paint layers. In addition, a structural polymorph of Hg(C16)
2
and Hg(C18)
2
with a different arrangement of carboxylate groups around the mercury atom was formed after the heat treatment during the cooling down at ca 120 °C as documented by in situ high-temperature XRPD and FTIR.
Journal Article
Thermal Strain and Microstrain in a Polymorphic Schiff Base: Routes to Thermosalience
2025
We present a comprehensive structural and thermomechanical investigation of N-salicylideneaniline, a Schiff base derivative that exhibits remarkable thermosalient phase transition behavior. By combining variable-temperature X-ray powder diffraction (VT-XRPD), differential scanning calorimetry (DSC), hot-stage microscopy, and Hirshfeld surface analysis, we reveal two distinct thermosalient mechanisms operating in different polymorphic forms. Form I displays pronounced anisotropic thermal expansion with negative strain along a principal axis, culminating in a sudden and explosive phase transition into Form IV. In contrast, Form III transforms more gradually through a microstrain accumulation mechanism. Fingerprint plots and contact evolution from Hirshfeld surface analysis further support this dual-mechanism model. These insights highlight the importance of integrating macro- and microscale structural descriptors to fully capture the mechanical behavior of responsive molecular solids. The findings not only enhance the fundamental understanding of thermosalience but also inform the rational design of functional materials for actuating and sensing applications.
Journal Article
Nanostructured Molecular–Network Arsenoselenides from the Border of a Glass-Forming Region: A Disproportionality Analysis Using Complementary Characterization Probes
by
Hyla, Malgorzata
,
Wojnarowska-Nowak, Renata
,
Shpotyuk, Yaroslav
in
Arsenic
,
arsenoselenides
,
Glass
2024
Binary AsxSe100−x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry–wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum–chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy–crystalline g/c-As67Se33 and glassy–crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron–electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36–0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry–wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition.
Journal Article
Lime reactivity and overburning: the case of limestones belonging to Tuscan Nappe sequence (NW Tuscany, Italy)
by
Lezzerini, Marco
,
Cinzi, Luca
,
Pagnotta, Stefano
in
Analytical Chemistry
,
Calcium oxide
,
Carbon dioxide
2024
This study examines limestone properties and calcination process to enhance product quality. Limestone burning produces lime (CaO, calcium oxide) and carbon dioxide (CO
2
). Lime is a substance highly reactive and turns into slaked lime (Ca(OH)
2
, calcium hydroxide) when exposed to water. Six limestone samples from Tuscan Nappe sedimentary sequence, outcropping in the Monti d’Oltre Serchio area (NW Tuscany, Italy), were selected and calcined at different temperatures (800, 900, 1000 and 1100 °C). The obtained lime was slaked, and chemical, mineralogical and petrographic analyses were conducted to study its reactivity during slaking process. Key factors influencing lime reactivity were identified: calcination temperature/time and limestone characteristics (chemical and mineralogical composition). The lime reactivity was measured through the rate of lime hydration reaction. Results showed that higher reactivity in lime, lower calcination temperature. The increase in temperature and time leads to an increase of CaO grain size and, consequently, to a decrease in reactivity. Temperature increase has a more significant effect on the increasing of grain size and reactivity than time. The optimal calcination temperature was found to be 900 °C, like that of ancient limekilns. The study emphasized the close link between lime reactivity and chemistry/mineralogy of limestone. Overall, the research provides insights for improving limestone calcination processes and obtaining superior products.
Journal Article
Improving Co-Amorphous Drug Formulations by the Addition of the Highly Water Soluble Amino Acid, Proline
2014
Co-amorphous drug amino acid mixtures were previously shown to be a promising approach to create physically stable amorphous systems with the improved dissolution properties of poorly water-soluble drugs. The aim of this work was to expand the co-amorphous drug amino acid mixture approach by combining the model drug, naproxen (NAP), with an amino acid to physically stabilize the co-amorphous system (tryptophan, TRP, or arginine, ARG) and a second highly soluble amino acid (proline, PRO) for an additional improvement of the dissolution rate. Co-amorphous drug-amino acid blends were prepared by ball milling and investigated for solid state characteristics, stability and the dissolution rate enhancement of NAP. All co-amorphous mixtures were stable at room temperature and 40 °C for a minimum of 84 days. PRO acted as a stabilizer for the co-amorphous system, including NAP–TRP, through enhancing the molecular interactions in the form of hydrogen bonds between all three components in the mixture. A salt formation between the acidic drug, NAP, and the basic amino acid, ARG, was found in co-amorphous NAP–ARG. In comparison to crystalline NAP, binary NAP–TRP and NAP–ARG, it could be shown that the highly soluble amino acid, PRO, improved the dissolution rate of NAP from the ternary co-amorphous systems in combination with either TRP or ARG. In conclusion, both the solubility of the amino acid and potential interactions between the molecules are critical parameters to consider in the development of co-amorphous formulations.
Journal Article
Preparation and Surface Characterization of Cerium Dioxide for Separation of sup.68Ge/sup.68Ga and Other Medicinal Radionuclides
2023
The overall need for the preparation of new medicinal radionuclides has led to the fast development of new sorption materials, extraction agents, and separation methods. Inorganic ion exchangers, mainly hydrous oxides, are the most widely used materials for the separation of medicinal radionuclides. One of the materials that has been studied for a long time is cerium dioxide, a competitive sorption material for the broadly used titanium dioxide. In this study, cerium dioxide was prepared through calcination of ceric nitrate and fully characterized using X-ray powder diffraction (XRPD), infrared spectrometry (FT-IR), scanning and transmission electron microscopy (SEM and TEM), thermogravimetric and differential thermal analysis (TG and DTA), dynamic light scattering (DLS), and analysis of surface area. In order to estimate the sorption mechanism and capacity of the prepared material, characterization of surface functional groups was carried out using acid-base titration and mathematical modeling. Subsequently, the sorption capacity of the prepared material for germanium was measured. It can be stated that the prepared material is prone to exchange anionic species in a wider range of pH than titanium dioxide. This characteristic makes the material superior as a matrix in [sup.68]Ge/[sup.68]Ga radionuclide generators, and its suitability should be further studied in batch, kinetic, and column experiments.
Journal Article
Pulmonary Delivery of Curcumin and Beclomethasone Dipropionate in a Multicomponent Nanosuspension for the Treatment of Bronchial Asthma
2021
Curcumin has shown a potential extraordinary activity as an add-on ingredient in asthma treatment, due to its immunomodulatory and anti-inflammatory mechanism of action. However, its low water solubility and bioavailability lead to a poor therapeutic effect, which can be overcome by its formulation as nanocrystals. The aim of this study was to prepare a multicomponent formulation for the delivery of curcumin (CUR) and beclomethasone dipropionate (BDP) into the lungs as water-based nanosuspensions (NS). Single component formulations (CUR-NS, BDP-NS) and a multicomponent formulation (CUR+BDP-NS) were prepared through a wet ball media milling technique, using P188 as a non-toxic stabilizer. Characterization was carried out in terms of size, size distribution, zeta potential, nanocrystals morphology, and solid-state properties. Moreover, the inhalation delivery efficiency was studied with Next Generation Impactor (NGI, Apparatus E Ph. Eu). CUR-NS was optimized and showed a long-term stability and improved nanocrystals apparent solubility. The three formulations exhibited a nanocrystal mean diameter in the range of 200–240 nm and a homogenous particle size distribution. Aggregation or sedimentation phenomena were not observed in the multicomponent formulation on 90 days storage at room temperature. Finally, the nebulization tests of the three samples showed optimal aerodynamic parameters and MMAD < 5 µm.
Journal Article
Comprehensive Characterisation of the Ketoprofen-β-Cyclodextrin Inclusion Complex Using X-ray Techniques and NMR Spectroscopy
by
Maurin, Jan K.
,
Michalska, Katarzyna
,
Betlejewska-Kielak, Katarzyna
in
Acids
,
Analgesics
,
Aqueous solutions
2021
Racemic ketoprofen (KP) and β-cyclodextrin (β-CD) powder samples from co-precipitation (1), evaporation (2), and heating-under-reflux (3) were analysed using X-ray techniques and nuclear magnetic resonance (NMR) spectroscopy. On the basis of NMR studies carried out in an aqueous solution, it was found that in the samples obtained by methods 1 and 2, there were large excesses of β-CD in relation to KP, 10 and 75 times, respectively, while the sample obtained by method 3 contained equimolar amounts of β-CD and KP. NMR results indicated that KP/β-CD inclusion complexes were formed and the estimated binding constants were approximately 2400 M−1, showing that KP is quite strongly associated with β-CD. On the other hand, the X-ray single-crystal technique in the solid state revealed that the (S)-KP/β-CD inclusion complex with a stoichiometry of 2:2 was obtained as a result of heating-under-reflux, for which the crystal and molecular structure were examined. Among the methods used for the preparation of the KP/β-CD complex, only method 3 is suitable.
Journal Article
Cross-Analytical Strategies to Tackle “Medicines in Disguise” Presented as Food Supplements, a New Threat for Human Health
by
Dugay, Annabelle
,
Houzé, Pascal
,
Michel, Sylvie
in
Acetates
,
adulteration
,
Analytical chemistry
2025
Plant-based food supplements (FS) of doubtful traceability have now emerged as a new threat to human health. Food supplements adulterated with pharmaceutical ingredients are considered “medicines in disguise” by regulatory authorities, which is a sub-category of falsified medicines. In the context of illegal manufacture and trade, as well as in the absence of an official phyto- and/or pharmacovigilance system, emergency departments and poison control centers constitute a early warning system for detecting ingested suspect FS. In the present investigation, we set up efficient workflows for the systematic characterization of adulterated plant-based FS in the context of an original local early warning alert system (i.e., FalsiMedTrack) involving an emergency department, a poison center, and academic analytical chemistry laboratories. Fit-for-purpose cross-analytical methods were employed, including sophisticated methods such as liquid chromatography coupled to high-resolution mass spectrometry, nuclear magnetic resonance, X-ray powder diffraction, as well as the most accessible and affordable HPLC method with UV/DAD detection. The strategy was applied successfully to typical cases of suspect plant-based health products, i.e., sample incriminated in patients experiencing side effects and herbal products currently commercialized for their “amazing health benefits”. The samples contained active pharmaceutical ingredients, including diclofenac, piroxicam, dexamethasone 21-acetate, and sibutramine. We provided evidence of “medicines in disguise” presented as food supplements, which raises concerns about their quality and safety.
Journal Article
Phase Evolution of Li-Rich Layered Li-Mn-Ni-(Al)-O Cathode Materials upon Heat Treatments in Air
by
Jøsang, Leif Olav
,
Svensson, Gunnar
,
Biendicho, Jordi Jacas
in
Aluminum
,
Cathodes
,
Electrode materials
2024
The phase evolution of Li-rich Li-Mn-Ni-(Al)-O cathode materials upon heat treatments in the air at 900 °C was studied by X-ray and neutron powder diffraction. In addition, the structures of Li1.26Mn0.61−xAlx Ni0.15O2, x = 0.0, 0.05, and 0.10, were refined from neutron powder diffraction data. For two-phase mixtures containing a monoclinic Li2MnO3 type phase M and a rhombohedral LiMn0.5Ni0.5O2 type phase R, the structures, compositions, and phase fractions change with heat treatment time. This is realized by the substitution mechanism 3Ni2+ ↔ 2Li+ + 1Mn4+, which enables cation transport between the phases. A whole-powder pattern fitting analysis of size and strain broadening shows that strain broadening dominates. The X-ray domain size increases with heat treatment time and is larger than the sizes of the domains of M and R observed by electron microscopy. For heat-treated samples, the domain size is smaller for R than for M and decreases with increasing Al doping.
Journal Article