Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5,638
result(s) for
"Xenobiotics"
Sort by:
Revisited: Therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics
by
Schulz, Martin
,
Andresen-Streichert, Hilke
,
Schmoldt, Achim
in
Analgesics
,
Anesthesia
,
Annual reports
2020
In order to assess the significance of drug/substance levels measured in intensive care medicine and clinical and forensic toxicology as well as for therapeutic drug monitoring, it is essential that a comprehensive collection of data is readily available. We revisited and expanded our 2012 compilation of therapeutic and toxic plasma concentration ranges as well as half-lives of now more than 1100 drugs and other xenobiotics.
Data have been abstracted from original papers, text books, and previous compilations and have been completed with data collected in our own forensic and clinical toxicology laboratories. We compiled the data presented in the table and the corresponding annotations over the past 30+ years. A previous compilation was completely double-checked, revised, and updated, if necessary. In addition, more than 200 substances, especially drugs who have been introduced since 2012 to the market as well as illegal drugs and other xenobiotics which became known to cause intoxications were added. We carefully referenced all data. Moreover, the annotations providing details were updated and revised, when necessary.
For more than 1100 drugs and other xenobiotics, therapeutic (“normal”) and, if data was available, toxic, and comatose-fatal plasma/blood concentrations as well as elimination half-lives were compiled in a table.
In case of intoxications, the blood concentration of the substance and/or metabolite better predicts the clinical severity of the case when compared to the assumed amount and time of ingestion. Comparing and contrasting the clinical case against the data provided, including the half-life, may support the decision for or against further intensive care. In addition, the data provided are useful for the therapeutic monitoring of pharmacotherapies, to facilitate the diagnostic assessment and monitoring of acute and chronic intoxications as well as to support forensic and clinical expert opinions.
Journal Article
EPA’s non-targeted analysis collaborative trial (ENTACT): genesis, design, and initial findings
by
Williams, Antony J
,
Sobus, Jon R
,
Newton, Seth R
in
Chromatography
,
Collaboration
,
Data processing
2019
In August 2015, the US Environmental Protection Agency (EPA) convened a workshop entitled “Advancing non-targeted analyses of xenobiotic chemicals in environmental and biological media.” The purpose of the workshop was to bring together the foremost experts in non-targeted analysis (NTA) to discuss the state-of-the-science for generating, interpreting, and exchanging NTA measurement data. During the workshop, participants discussed potential designs for a collaborative project that would use EPA resources, including the ToxCast library of chemical substances, the DSSTox database, and the CompTox Chemicals Dashboard, to evaluate cutting-edge NTA methods. That discussion was the genesis of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Nearly 30 laboratories have enrolled in ENTACT and used a variety of chromatography, mass spectrometry, and data processing approaches to characterize ten synthetic chemical mixtures, three standardized media (human serum, house dust, and silicone band) extracts, and thousands of individual substances. Initial results show that nearly all participants have detected and reported more compounds in the mixtures than were intentionally added, with large inter-lab variability in the number of reported compounds. A comparison of gas and liquid chromatography results shows that the majority (45.3%) of correctly identified compounds were detected by only one method and 15.4% of compounds were not identified. Finally, a limited set of true positive identifications indicates substantial differences in observable chemical space when employing disparate separation and ionization techniques as part of NTA workflows. This article describes the genesis of ENTACT, all study methods and materials, and an analysis of results submitted to date.
Journal Article
Human Gut Microbiota and Drug Metabolism
2023
The efficacy of drugs widely varies in individuals, and the gut microbiota plays an important role in this variability. The commensal microbiota living in the human gut encodes several enzymes that chemically modify systemic and orally administered drugs, and such modifications can lead to activation, inactivation, toxification, altered stability, poor bioavailability, and rapid excretion. Our knowledge of the role of the human gut microbiome in therapeutic outcomes continues to evolve. Recent studies suggest the existence of complex interactions between microbial functions and therapeutic drugs across the human body. Therapeutic drugs or xenobiotics can influence the composition of the gut microbiome and the microbial encoded functions. Both these deviations can alter the chemical transformations of the drugs and hence treatment outcomes. In this review, we provide an overview of (i) the genetic ecology of microbially encoded functions linked with xenobiotic degradation; (ii) the effect of drugs on the composition and function of the gut microbiome; and (iii) the importance of the gut microbiota in drug metabolism.
Journal Article
Mechanistic insights into the synergistic activation of the RXR–PXR heterodimer by endocrine disruptor mixtures
2021
Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR–PXR and potentially several other nuclear receptor heterodimers.
Journal Article
Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures
by
Panthu, Baptiste
,
Rautureau, Gilles J. P.
,
Balcerczyk, Aneta
in
Animals
,
Biochemistry, biophysics & molecular biology
,
Biochimie, biophysique & biologie moléculaire
2020
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Journal Article
Discovery of a widespread metabolic pathway within and among phenolic xenobiotics
by
Ashrap, Pahriya
,
Li, Tong
,
Li, Wenjuan
in
Animals
,
Anti-Infective Agents, Local - toxicity
,
Aromatic compounds
2017
Metabolism is an organism’s primary defense against xenobiotics, yet it also increases the production of toxic metabolites. It is generally recognized that phenolic xenobiotics, a group of ubiquitous endocrine disruptors, undergo rapid phase II metabolism to generate more water-soluble glucuronide and sulfate conjugates as a detoxification pathway. However, the toxicological effects of the compounds invariably point to the phase I metabolic cytochrome P450 enzymes. Here we show that phenolic xenobiotics undergo an unknown metabolic pathway to form more lipophilic and bioactive products. In a nontargeted screening of the metabolites of a widely used antibacterial ingredient: triclosan (TCS), we identified a metabolic pathway via in vitro incubation with weever, quail, and human microsomes and in vivo exposure in mice, which generated a group of products: TCS-O-TCS. The lipophilic metabolite of TCS was frequently detected in urine samples from the general population, and TCS-O-TCS activated the constitutive androstane receptor with the binding activity about 7.2 times higher than that of the parent compound. The metabolic pathway was mediated mainly by phase I enzymes localized on the microsomes and widely observed in chlorinated phenols, phenols, and hydroxylated aromatics. The pathway was also present in different phenolic xenobiotics and formed groups of unknown pollutants in organisms (e.g., TCS-O-bisphenol A and TCS-O-benzo(a)pyrene), thus providing a cross-talk reaction between different phenolic pollutants during metabolic processes in organisms.
Journal Article
β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut
2018
Gut bacterial β-D-glucuronidases (GUSs) catalyze the removal of glucuronic acid from liver-produced β-D-glucuronides. These reactions can have deleterious consequences when they reverse xenobiotic metabolism. The human gut contains hundreds of GUSs of variable sequences and structures. To understand how any particular bacterial GUS(s) contributes to global GUS activity and affects human health, the individual substrate preference(s) must be known. Herein, we report that representative GUSs vary in their ability to produce various xenobiotics from their respective glucuronides. To attempt to explain the distinct substrate preference, we solved the structure of a bacterial GUS complexed with coumarin-3-β-D-glucuronide. Comparisons of this structure with other GUS structures identified differences in loop 3 (or the α2-helix loop) and loop 5 at the aglycone-binding site, where differences in their conformations, hydrophobicities and flexibilities appear to underlie the distinct substrate preference(s) of the GUSs. Additional sequence, structural and functional analysis indicated that several groups of functionally related gut bacterial GUSs exist. Our results pinpoint opportunistic gut bacterial GUSs as those that cause xenobiotic-induced toxicity. We propose a structure-activity relationship that should allow both the prediction of the functional roles of GUSs and the design of selective inhibitors.
Journal Article
The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism
by
Bess, Elizabeth N.
,
Spanogiannopoulos, Peter
,
Carmody, Rachel N.
in
631/326/22
,
631/326/2565/2134
,
631/326/41/2142
2016
Key Points
The gut microbiome is a neglected component of the first-pass metabolism of xenobiotics before reaching the general circulation.
Direct microbial metabolism of xenobiotics and their metabolites often involves reduction or hydrolysis, but most of the enzymes responsible for these reactions remain unknown.
Microbial metabolism influences both efficacy and toxicity, producing bioactive compounds, inactive metabolites and toxins.
Relevant host–microbial interactions include the expression of host genes that are involved in drug transport and metabolism, the interference with host enzymatic activity and the modulation of immune responses.
The translational implications of these studies include the development of novel co-therapies and the identification of new biomarkers and drugs.
In this Review, Turnbaugh and colleagues discuss several mechanisms by which the human gut microbiome affects the metabolism of xenobiotics, including drugs and dietary compounds, and explore how this knowledge can be applied to improve the treatment of human disease.
Although the importance of human genetic polymorphisms in therapeutic outcomes is well established, the role of our 'second genome' (the microbiome) has been largely overlooked. In this Review, we highlight recent studies that have shed light on the mechanisms that link the human gut microbiome to the efficacy and toxicity of xenobiotics, including drugs, dietary compounds and environmental toxins. Continued progress in this area could enable more precise tools for predicting patient responses and for the development of a new generation of therapeutics based on, or targeted at, the gut microbiome. Indeed, the admirable goal of precision medicine may require us to first understand the microbial pharmacists within.
Journal Article
Cytochromes P450 and metabolism of xenobiotics
2001
Cytochromes P450 (henceforth P450s) are involved in a variety of metabolic and biosynthetic processes. The number of known P450 enzymes exceeds 1000, while the endogenous substrates of most of them remain unknown. All P450 enzymes exhibit similarity in their structure and general mechanism of action; however, there are significant differences in the detailed function of individual enzymes as well as in the structures and properties of their active sites. This review discusses the properties of the most important P450 enzymes taking part in drug metabolism in humans. P450 3A4 is of paramount importance, because it is the most abundant P450 in the human liver and is known to metabolize the majority of drugs whose biotransformation is known. Genetically dependent variabilities of individual P450 activities and levels are described, documenting the importance of pharmacogenetics aimed at explaining differences in the response of the organism to various drugs.
Journal Article