Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
403 result(s) for "Z chromosome"
Sort by:
Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes)
Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.
Genome-wide introgression among distantly related Heliconius butterfly species
Background Although hybridization is thought to be relatively rare in animals, the raw genetic material introduced via introgression may play an important role in fueling adaptation and adaptive radiation. The butterfly genus Heliconius is an excellent system to study hybridization and introgression but most studies have focused on closely related species such as H. cydno and H. melpomene . Here we characterize genome-wide patterns of introgression between H. besckei , the only species with a red and yellow banded ‘postman’ wing pattern in the tiger-striped silvaniform clade, and co-mimetic H. melpomene nanna . Results We find a pronounced signature of putative introgression from H. melpomene into H. besckei in the genomic region upstream of the gene optix , known to control red wing patterning, suggesting adaptive introgression of wing pattern mimicry between these two distantly related species. At least 39 additional genomic regions show signals of introgression as strong or stronger than this mimicry locus. Gene flow has been on-going, with evidence of gene exchange at multiple time points, and bidirectional, moving from the melpomene to the silvaniform clade and vice versa. The history of gene exchange has also been complex, with contributions from multiple silvaniform species in addition to H. besckei . We also detect a signature of ancient introgression of the entire Z chromosome between the silvaniform and melpomene / cydno clades. Conclusions Our study provides a genome-wide portrait of introgression between distantly related butterfly species. We further propose a comprehensive and efficient workflow for gene flow identification in genomic data sets.
Gene flow and an anomaly zone complicate phylogenomic inference in a rapidly radiated avian family (Prunellidae)
Background Resolving the phylogeny of rapidly radiating lineages presents a challenge when building the Tree of Life. An Old World avian family Prunellidae (Accentors) comprises twelve species that rapidly diversified at the Pliocene–Pleistocene boundary. Results Here we investigate the phylogenetic relationships of all species of Prunellidae using a chromosome-level de novo assembly of Prunella strophiata and 36 high-coverage resequenced genomes. We use homologous alignments of thousands of exonic and intronic loci to build the coalescent and concatenated phylogenies and recover four different species trees. Topology tests show a large degree of gene tree-species tree discordance but only 40–54% of intronic gene trees and 36–75% of exonic genic trees can be explained by incomplete lineage sorting and gene tree estimation errors. Estimated branch lengths for three successive internal branches in the inferred species trees suggest the existence of an empirical anomaly zone. The most common topology recovered for species in this anomaly zone was not similar to any coalescent or concatenated inference phylogenies, suggesting presence of anomalous gene trees. However, this interpretation is complicated by the presence of gene flow because extensive introgression was detected among these species. When exploring tree topology distributions, introgression, and regional variation in recombination rate, we find that many autosomal regions contain signatures of introgression and thus may mislead phylogenetic inference. Conversely, the phylogenetic signal is concentrated to regions with low-recombination rate, such as the Z chromosome, which are also more resistant to interspecific introgression. Conclusions Collectively, our results suggest that phylogenomic inference should consider the underlying genomic architecture to maximize the consistency of phylogenomic signal.
Genomic patterns of strain-specific genetic structure, linkage, and selection across fall armyworm populations
Background Molecular genetic approaches have become vital to understanding the evolutionary processes that act on insect pest populations. From mapping the development of resistance to monitoring and predicting pest movement, genomic tools can inform and enhance pest management programs. Here, we used whole genome sequencing population genomics to unravel novel patterns of population structure, linkage, and selection across the genome of a notorious agricultural pest, the fall armyworm. Results Our data strongly support the existence of two genetically distinct strains of fall armyworm in North America, which have previously been referred to as the C-strain and the R-strain. Although these strains have diverged genetically, we find that differentiation is not uniform across the genome. The Z-chromosome appears to drive divergence between strains with high levels of linkage observed across this chromosome. We also show that a region of the Z-chromosome containing a circadian clock gene implicated in allochronic reproductive isolation is under strain-specific selection. Our data indicates that strains differ in their geographic distributions and exhibit distinct patterns of geographic sub-structuring indicative of unique dispersal patterns. We provide the first evidence for nuclear genomic differentiation between the two major overwintering populations of fall armyworm in the US. Finally, our data reveal population-specific patterns of selection on genomic regions containing putative insecticide resistance alleles, which could relate to their biogeography. Conclusions Our results support the existence of the fall armyworm as a pest dyad in the US, with genetically-distinct strains differing in their population structure, dispersal patterns, and genomic signatures of selection on regions likely involved reproductive isolation and insecticide resistance. These differences should be considered when devising and implementing management strategies.
Following the Pathway of W Chromosome Differentiation in Triportheus (Teleostei: Characiformes)
In this work, we trace the dynamics of satellite DNAs (SatDNAs) accumulation and elimination along the pathway of W chromosome differentiation using the well-known Triportheus fish model. Triportheus stands out due to a conserved ZZ/ZW sex chromosome system present in all examined species. While the Z chromosome is conserved in all species, the W chromosome is invariably smaller and exhibits differences in size and morphology. The presumed ancestral W chromosome is comparable to that of T. auritus, and contains 19 different SatDNA families. Here, by examining five additional Triportheus species, we showed that the majority of these repetitive sequences were eliminated as speciation was taking place. The W chromosomes continued degeneration, while the Z chromosomes of some species began to accumulate some TauSatDNAs. Additional species-specific SatDNAs that made up the heterochromatic region of both Z and W chromosomes were most likely amplified in each species. Therefore, the W chromosomes of the various Triportheus species have undergone significant evolutionary changes in a short period of time (15–25 Myr) after their divergence.
Whole-Genome Analysis Reveals the Dynamic Evolution of Holocentric Chromosomes in Satyrine Butterflies
Butterfly chromosomes are holocentric, i.e., lacking a localized centromere. Potentially, this can lead to rapid karyotypic evolution through chromosome fissions and fusions, since fragmented chromosomes retain kinetic activity, while fused chromosomes are not dicentric. However, the actual mechanisms of butterfly genome evolution are poorly understood. Here, we analyzed chromosome-scale genome assemblies to identify structural rearrangements between karyotypes of satyrine butterfly species. For the species pair Erebia ligea–Maniola jurtina, sharing the ancestral diploid karyotype 2n = 56 + ZW, we demonstrate a high level of chromosomal macrosynteny and nine inversions separating these species. We show that the formation of a karyotype with a low number of chromosomes (2n = 36 + ZW) in Erebia aethiops was based on ten fusions, including one autosome–sex chromosome fusion, resulting in a neo-Z chromosome. We also detected inversions on the Z sex chromosome that were differentially fixed between the species. We conclude that chromosomal evolution is dynamic in the satyrines, even in the lineage that preserves the ancestral chromosome number. We hypothesize that the exceptional role of Z chromosomes in speciation may be further enhanced by inversions and sex chromosome–autosome fusions. We argue that not only fusions/fissions but also inversions are drivers of the holocentromere-mediated mode of chromosomal speciation.
Identification of Two Potential Gene Insertion Sites for Gene Editing on the Chicken Z/W Chromosomes
The identification of accurate gene insertion sites on chicken sex chromosomes is crucial for advancing sex control breeding materials. In this study, the intergenic region NC_006127.4 on the chicken Z chromosome and the non-repetitive sequence EE0.6 on the W chromosome were selected as potential gene insertion sites. Gene knockout vectors targeting these sites were constructed and transfected into DF-1 cells. T7E1 enzyme cleavage and luciferase reporter enzyme analyses revealed knockout efficiencies of 80.00% (16/20), 75.00% (15/20), and 75.00% (15/20) for the three sgRNAs targeting the EE0.6 site. For the three sgRNAs targeting the NC_006127.4 site, knockout efficiencies were 70.00% (14/20), 60.00% (12/20), and 45.00% (9/20). Gel electrophoresis and high-throughput sequencing were performed to detect potential off-target effects, showing no significant off-target effects for the knockout vectors at the two sites. EdU and CCK-8 proliferation assays revealed no significant difference in cell proliferation activity between the knockout and control groups. These results demonstrate that the EE0.6 and NC_006127.4 sites can serve as gene insertion sites on chicken sex chromosomes for gene editing without affecting normal cell proliferation.
Sex Differences in Response to Marek’s Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome
Marek’s Disease (MD) has a significant impact on both the global poultry economy and animal welfare. The disease pathology can include neurological damage and tumour formation. Sexual dimorphism in immunity and known higher susceptibility of females to MD makes the chicken Z chromosome (GGZ) a particularly attractive target to study the chicken MD response. Previously, we used a Hy-Line F6 population from a full-sib advanced intercross line to map MD QTL regions (QTLRs) on all chicken autosomes. Here, we mapped MD QTLRs on GGZ in the previously utilized F6 population with individual genotypes and phenotypes, and in eight elite commercial egg production lines with daughter-tested sires and selective DNA pooling (SDP). Four MD QTLRs were found from each analysis. Some of these QTLRs overlap regions from previous reports. All QTLRs were tested by individuals from the same eight lines used in the SDP and genotyped with markers located within and around the QTLRs. All QTLRs were confirmed. The results exemplify the complexity of MD resistance in chickens and the complex distribution of p-values and Linkage Disequilibrium (LD) pattern and their effect on localization of the causative elements. Considering the fragments and interdigitated LD blocks while using LD to aid localization of causative elements, one must look beyond the non-significant markers, for possible distant markers and blocks in high LD with the significant block. The QTLRs found here may explain at least part of the gender differences in MD tolerance, and provide targets for mitigating the effects of MD.
Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites
Degeneration of the nonrecombining chromosome is a common feature of sex chromosome evolution, readily evident by the presence of a pair of largely heteromorphic chromosomes, like in eutherian mammals and birds. However, in ratites (order Palaeognathae, including, e.g., ostrich), the Z and W chromosomes are similar in size and largely undifferentiated, despite avian sex chromosome evolution was initiated > 130 Ma. To better understand what may limit sex chromosome evolution, we performed ostrich transcriptome sequencing and studied genes from the nonrecombining region of the W chromosome. Fourteen gametologous gene pairs present on the W chromosome and Z chromosome were identified, with synonymous sequence divergence of 0.027–0.177. The location of these genes on the Z chromosome was consistent with a sequential increase in divergence, starting 110–157 and ending 24–30 Ma. On the basis of the occurrence of Z-linked genes hemizygous in females, we estimate that about one-third of the Z chromosome does not recombine with the W chromosome in female meiosis. Pairwise dN/dS between gametologs decreased with age, suggesting strong evolutionary constraint in old gametologs. Lineage-specific dN/dS was consistently higher in W-linked genes, in accordance with the lower efficacy of selection expected in nonrecombining chromosomes. A higher ratio of GC > AT:AT > GC substitutions in W-linked genes supports a role for GC-biased gene conversion in differentially driving base composition on the two sex chromosomes. A male-to-female (M:F) expression ratio of close to one for recombining genes and close to two for Z-linked genes lacking a W copy show that dosage compensation is essentially absent. Some gametologous genes have retained active expression of the W copy in females (giving a M:F ratio of 1 for the gametologous gene pair), whereas for others W expression has become severely reduced resulting in a M:F ratio of close to 2. These observations resemble the patterns of sex chromosome evolution seen in other avian and mammalian lineages, suggesting similar underlying evolutionary processes, although the rate of sex chromosome differentiation has been atypically low. Lack of dosage compensation may be a factor hindering sex chromosome evolution in this lineage.
Transcriptomic Analysis Revealed Candidate Genes Involved in Pseudomale Sperm Abnormalities in Chinese Tongue Sole (Cynoglossus semilaevis)
Chinese tongue sole (Cynoglossus semilaevis) has a ZZ/ZW sex determination system, but the genotypic female (ZW) can be sex-reversed into phenotypic males, namely, pseudomales. Pseudomale fish can produce only Z-type sperm but not W sperm. However, the molecular mechanism is unclear. To screen the key genes involved in pseudomale sperm abnormalities, we analysed the transcriptomic profiles of pseudomale and male sperm. In comparison to male sperm, 592 differentially expressed genes (DEGs) were identified in pseudomale sperm, including 499 upregulated and 93 downregulated genes. KEGG analysis indicated that the FoxO signalling pathway, especially the foxo3a and foxo6-like genes, may play an important role in spermatogenesis. The DEGs were mainly distributed on sex chromosomes, with 158 downregulated genes on the Z chromosome and 41 upregulated genes on the W chromosome. A specific area (14–15 M) on the Z chromosome was identified, which enriched eight DEGs inside the ~1 M region. In addition, there were five gene alleles on the sex chromosomes, which showed the opposite transcription pattern (upregulated for the W allele, downregulated for the Z allele). This study has provided valuable data for screening candidate genes involved in the pseudomale sperm abnormality.