Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4,555
result(s) for
"Zinc Compounds - analysis"
Sort by:
A new method to position and functionalize metal-organic framework crystals
by
Jasieniak, Jacek
,
Gimona, Michele
,
Whitfield, Harold J.
in
639/301/357/354
,
639/638/263
,
639/638/298/921
2011
With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.
Metal-organic frameworks (MOFs) have potential catalysis, filtration and sensing applications, but device fabrication will require controlled MOF growth. Here, α-hopeite microparticles are used to achieve spatial control of MOF nucleation, and accelerate MOF growth.
Journal Article
The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile
by
Parak, Wolfgang J.
,
Himmelreich, Uwe
,
Martens, Thomas F.
in
Analysis
,
Autophagy - drug effects
,
Biocompatibility
2017
Background
Nanoparticle interactions with cellular membranes and the kinetics of their transport and localization are important determinants of their functionality and their biological consequences. Understanding these phenomena is fundamental for the translation of such NPs from in vitro to in vivo systems for bioimaging and medical applications. Two CdSe/ZnS quantum dots (QD) with differing surface functionality (NH
2
or COOH moieties) were used here for investigating the intracellular uptake and transport kinetics of these QDs.
Results
In water, the COOH- and NH
2
-QDs were negatively and positively charged, respectively, while in serum-containing medium the NH
2
-QDs were agglomerated, whereas the COOH-QDs remained dispersed. Though intracellular levels of NH
2
- and COOH-QDs were very similar after 24 h exposure, COOH-QDs appeared to be continuously internalised and transported by endosomes and lysosomes, while NH
2
-QDs mainly remained in the lysosomes. The results of (intra)cellular QD trafficking were correlated to their toxicity profiles investigating levels of reactive oxygen species (ROS), mitochondrial ROS, autophagy, changes to cellular morphology and alterations in genes involved in cellular stress, toxicity and cytoskeletal integrity. The continuous flux of COOH-QDs perhaps explains their higher toxicity compared to the NH
2
-QDs, mainly resulting in mitochondrial ROS and cytoskeletal remodelling which are phenomena that occur early during cellular exposure.
Conclusions
Together, these data reveal that although cellular QD levels were similar after 24 h, differences in the nature and extent of their cellular trafficking resulted in differences in consequent gene alterations and toxicological effects.
Journal Article
Zinc preconditioning protects against renal ischaemia reperfusion injury in a preclinical sheep large animal model
2018
Ischaemia–reperfusion injury (IRI) during various surgical procedures, including partial nephrectomy for kidney cancer or renal transplantation, is a major cause of acute kidney injury and chronic kidney disease. Currently there are no drugs or methods for protecting human organs, including the kidneys, against the peril of IRI. The aim of this study was therefore to investigate the reno-protective effect of Zn2+ preconditioning in a clinically relevant large animal sheep model of IRI. Further the reno-protective effectiveness of Zn2+ preconditioning was tested on normal human kidney cell lines HK-2 and HEK293. Anaesthetised sheep were subjected to uninephrectomy and 60 min of renal ischaemia followed by reperfusion. Sheep were preconditioned with intravenous injection of zinc chloride prior to occlusion. Serum creatinine and urea were measured before ischaemia and for 7 days after reperfusion. HK-2 and HEK293 cells were subjected to in vitro IRI using the oxygen- and glucose-deprivation model. Zn2+ preconditioning reduced ischaemic burden determined by creatinine and urea rise over time by ~ 70% in sheep. Zn2+ preconditioning also increased the survival of normal human kidney cells subjected to cellular stress such as hypoxia, hydrogen peroxide injury, and serum starvation. Overall, our protocol incorporating specific Zn2+ dosage, number of dosages (two), time of injection (24 and 4 h prior), mode of Zn2+ delivery (IV) and testing of efficacy in a rat model, a large preclinical sheep model of IRI and cells of human origin has laid the foundation for assessment of the benefit of Zn2+ preconditioning for human applications.
Journal Article
A Macrocyclic Zinc(II) Fluorophore as a Detector of Apoptosis
2003
Our originally designed dansylamidoethylcyclen 4 as a biomimetic Zn2+-selective fluorophore has been demonstrated to be a good detector of the apoptosis (induced by an anticancer agent, etoposide, and H2O2) in cancer cells such as HeLa and HL60 cells. The macrocyclic Zn2+ ligand 4 (mostly as a deprotonated form) is cell-permeable to show weak fluorescence (emission at 550 nm), which forms a strong fluorescent 1:1 Zn2+ complex 5 (emission at 530 nm) when Zn2+ is incorporated into the cells by a zinc(II) ionophore pyrithione. Thus formed, Zn2+ complex 5 is cell-impermeable and remains intact over a few hours. When apoptosis in HeLa or HL60 cells is artificially induced, 4 selectively and strongly stains apoptotic cells only at early stages, which was verified by using the conventional apoptosis detection probe annexin V-Cy3. Detection of the apoptotic cells by 4 was perhaps due to significantly increased free Zn2+ flux at early stages of apoptosis. Apoptotic detection by 4 has been compared with a presently available Zn2+ fluorophore, Zinquin 1. We present that 4 has advantages in detection of apoptosis over annexin V-Cy3 and Zinquin 1.
Journal Article
The role of authigenic sulfides in immobilization of potentially toxic metals in the Bagno Bory wetland, southern Poland
by
Janeczek, Janusz
,
Bauerek, Arkadiusz
,
Thorseth, Ingunn Hindenes
in
Aquatic Pollution
,
Aqueous chemistry
,
Artificial wetlands
2015
The supply of Cd, Cu, Fe, Pb, Zn, and Tl into a wetland in the industrial area of Upper Silesia, southern Poland via atmospheric precipitation and dust deposition has been counterbalanced by the biogenic metal sulfide crystallization in microsites of the thin (<30 cm) peat layer, despite the overall oxidative conditions in the wetland. Disequilibrium of the redox reactions in the peat pore water (pH 5.4–6.2) caused by sulfate-reducing microorganisms has resulted in the localized decrease in Eh and subsequent precipitation of micron- and submicron-sized framboidal pyrite, spheroidal ZnS and (Zn,Cd)S, and galena as revealed by high-resolution scanning electron microscopy (SEM)/energy dispersive spectrometer (EDS). Saturation index for each sulfide is at a maximum within the calculated Eh range of −80 and −146 mV. Lead was also immobilized in galena deposited in fungal filaments, possibly at a higher Eh. Thallium (up to 3 mg kg−1) in the peat strongly correlates with Zn, whereas Cu (up to 55 mg kg−1) co-precipitated with Pb. The metal sulfides occur within microbial exudates, which protect them from oxidation and mechanical displacement. Vertical distribution of toxic metals in the peat layer reflects differences in pollution loads from atmospheric deposition, which has been much reduced recently.
Journal Article
Ingredients of a 2,000-y-old medicine revealed by chemical, mineralogical, and botanical investigations
by
Romualdi, Antonella
,
Ribechini, Erika
,
Lucejko, Jeannette Jacqueline
in
animals
,
Archaeology
,
Bending
2013
In archaeology, the discovery of ancient medicines is very rare, as is knowledge of their chemical composition. In this paper we present results combining chemical, mineralogical, and botanical investigations on the well-preserved contents of a tin pyxis discovered onboard the Pozzino shipwreck (second century B.C.). The contents consist of six flat, gray, discoid tablets that represent direct evidence of an ancient medicinal preparation. The data revealed extraordinary information on the composition of the tablets and on their possible therapeutic use. Hydrozincite and smithsonite were by far the most abundant ingredients of the Pozzino tablets, along with starch, animal and plant lipids, and pine resin. The composition and the form of the Pozzino tablets seem to indicate that they were used for ophthalmic purposes: the Latin name collyrium (eyewash) comes from the Greek name κoλλυ´ρα , which means “small round loaves.” This study provided valuable information on ancient medical and pharmaceutical practices and on the development of pharmacology and medicine over the centuries. In addition, given the current focus on natural compounds, our data could lead to new investigations and research for therapeutic care.
Journal Article
amorphous Zn biomineralization at Naracauli stream, Sardinia: electron microscopy and X-ray absorption spectroscopy
2014
An amorphous Zn biomineralization (“white mud”), occurring at Naracauli stream, Sardinia, in association with cyanobacteria Leptolyngbya frigida and diatoms, was investigated by electron microscopy and X-ray absorption spectroscopy. Preliminary diffraction analysis shows that the precipitate sampled on Naracauli stream bed is mainly amorphous, with some peaks ascribable to quartz and phyllosilicates, plus few minor unattributed peaks. Scanning electron microscopy analysis shows that the white mud, precipitated in association with a seasonal biofilm, is made of sheaths rich in Zn, Si, and O, plus filaments likely made of organic matter. Transmission electron microscopy analysis shows that the sheaths are made of smaller units having a size in the range between 100 and 200 nm. X-ray absorption near-edge structure and extended X-ray absorption fine structure data collected at the Zn K-edge indicate that the biomineral has a local structure similar to hemimorphite, a zinc sorosilicate. The differences of this biomineral with respect to the hydrozincite biomineralization documented about 3 km upstream in the same Naracauli stream may be related to either variations in the physicochemical parameters and/or different metabolic behavior of the involved biota.
Journal Article
The effect of zinc chloride, humidity and the substrate on the reaction of 1,2-indanedione–zinc with amino acids in latent fingermark secretions
by
Shimmon, Ronald
,
Lennard, Chris
,
Spindler, Xanthe
in
1,2-indanedione
,
Amino acids
,
Amino Acids - analysis
2011
Anecdotal evidence from forensic practitioners and studies conducted under controlled conditions have indicated that the reaction between 1,2-indanedione and the amino acids present in latent fingermark deposits is highly susceptible to ambient humidity. The addition of catalytic amounts of zinc chloride to the 1,2-indanedione working solution – usually in the order of 1:25 to 1:4 molar ratio (indanedione:zinc) – significantly improves the colour and luminescence of fingermarks treated under dry conditions but appears to have a negligible effect on fingermarks treated in humid environments. The results presented in this paper confirmed that zinc(II) ions added to the 1,2-indanedione working solution act as a Lewis acid catalyst, stabilising a key intermediate during a rate-limiting hydrolysis step. Furthermore, studying the reaction using a chromatography-grade cellulose substrate method previously reported confirmed that cellulose substrates play a major role in facilitating the indanedione-amino acid reaction by acting as a surface catalyst in the early stages of the reaction and by directing the formation of the desired luminescent product (Joullié’s Pink).
Journal Article
Rhodium(I)-Complexes Catalyzed 1,4-Conjugate Addition of Arylzinc Chlorides to N-Boc-4-pyridone
by
Jeffries, Malcolm C.
,
Graham, Shekinah A.
,
Guo, Fenghai
in
2,3-dihydropyridones
,
Acids
,
Catalysis
2017
Rhodium(I)-complexes catalyzed the 1,4-conjugate addition of arylzinc chlorides to N-Boc-4-pyridone in the presence of chlorotrimethylsilane (TMSCl). A combination of [RhCl(C2H4)2]2 and BINAP was determined to be the most effective catalyst to promote the 1,4-conjugate addition reactions of arylzinc chlorides to N-Boc-4-pyridone. A broad scope of arylzinc reagents with both electron-withdrawing and electron-donating substituents on the aromatic ring successfully underwent 1,4-conjugate addition to N-Boc-4-pyridone to afford versatile 1,4-adducts 2-substituted-2,3-dihydropyridones in good to excellent yields (up to 91%) and excellent ee (up to 96%) when (S)-BINAP was used as chiral ligand.
Journal Article
Dose-Response Effects of Zinc and Fluoride on Caries Lesion Remineralization
2012
The present mechanistic in vitro study aimed to investigate dose-response effects of zinc and fluoride on caries lesion remineralization and subsequent protection from demineralization. Artificial caries lesions were created using a methylcellulose acid gel system. Lesions were remineralized for 2 weeks using citrate-containing artificial saliva which was supplemented with zinc (0–153 µmol/l) and fluoride (1.1 or 52.6 µmol/l) in a 7 × 2 factorial design. Lesions were also remineralized in the absence of zinc and citrate, but in the presence of fluoride. After remineralization, all lesions were demineralized for 1 day under identical conditions. Changes in mineral distribution characteristics of caries lesions after remineralization and secondary demineralization were studied using transverse microradiography. At 1.1 µmol/l fluoride, zinc exhibited detrimental effects on remineralization in a dose-response manner and mainly by preventing remineralization near the lesion surface. At 52.6 µmol/l fluoride, zinc retarded remineralization only at the highest concentration tested. Zinc enhanced overall remineralization at 3.8–15.3 µmol/l. At 76.5 and less so at 153 µmol/l, zinc showed extensive remineralization of deeper parts within the lesions at the expense of remineralization near the surface. Citrate did not interfere with remineralization at 1.1 µmol/l fluoride, but enhanced remineralization at 52.6 µmol/l fluoride. Lesions exhibiting preferential remineralization in deeper parts showed higher mineral loss after secondary demineralization, suggesting the formation of more soluble mineral phases during remineralization. In summary, zinc and fluoride showed synergistic effects in enhancing lesion remineralization, however only at elevated fluoride concentrations.
Journal Article