Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
53
result(s) for
"Zyxin - genetics"
Sort by:
Characterization and development of photoactivatable fluorescent proteins for single-molecule–based superresolution imaging
by
Xie, X. Sunney
,
Zhuang, Xiaowei
,
Moffitt, Jeffrey R.
in
Aggregation
,
Animals
,
Atoms & subatomic particles
2014
Photoactivatable fluorescent proteins (PAFPs) have been widely used for superresolution imaging based on the switching and localization of single molecules. Several properties of PAFPs strongly influence the quality of the superresolution images. These properties include (i) the number of photons emitted per switching cycle, which affects the localization precision of individual molecules; (ii) the ratio of the on- and off-switching rate constants, which limits the achievable localization density; (iii) the dimerization tendency, which could cause undesired aggregation of target proteins; and (iv) the signaling efficiency, which determines the fraction of target–PAFP fusion proteins that is detectable in a cell. Here, we evaluated these properties for 12 commonly used PAFPs fused to both bacterial target proteins, H-NS, HU, and Tar, and mammalian target proteins, Zyxin and Vimentin. Notably, none of the existing PAFPs provided optimal performance in all four criteria, particularly in the signaling efficiency and dimerization tendency. The PAFPs with low dimerization tendencies exhibited low signaling efficiencies, whereas mMaple showed the highest signaling efficiency but also a high dimerization tendency. To address this limitation, we engineered two new PAFPs based on mMaple, which we termed mMaple2 and mMaple3. These proteins exhibited substantially reduced or undetectable dimerization tendencies compared with mMaple but maintained the high signaling efficiency of mMaple. In the meantime, these proteins provided photon numbers and on–off switching rate ratios that are comparable to the best achieved values among PAFPs.
Journal Article
Nanopillar force measurements reveal actin-cap-mediated YAP mechanotransduction
2018
A robust nanopillar platform with increased spatial resolution reveals that perinuclear forces, originating from stress fibres spanning the nucleus of fibroblasts, are significantly higher on these nanostructured substrates than the forces acting on peripheral adhesions. Many perinuclear adhesions embrace several nanopillars at once, pulling them into
β
1-integrin- and zyxin-rich clusters, which are able to translocate in the direction of cell motion without losing their tensile strength. The high perinuclear forces are greatly reduced upon inhibition of cell contractility or actin polymerization and disruption of the actin cap by KASH dominant-negative mutant expression.
LMNA
null fibroblasts have higher peripheral versus perinuclear forces, impaired perinuclear β
1
-integrin recruitment, as well as YAP nuclear translocation, functional alterations that can be rescued by lamin A expression. These highly tensed actin-cap fibres are required for YAP nuclear signalling and thus play far more important roles in sensing nanotopographies and mechanochemical signal conversion than previously thought.
Using nanopillars with increased spatial resolution, Shiu et al. identify high perinuclear forces that originate from contractile apical actin filaments that span across the nucleus and are dependent on lamin A and the LINC complex.
Journal Article
Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation
by
Black, Adrian R.
,
Talmon, Geoffrey A.
,
Zeng, Yongji
in
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
,
Animals
2018
Zyxin is a member of the focal adhesion complex and plays a critical role in actin filament polymerization and cell motility. Several recent studies showed that Zyxin is a positive regulator of Yki/YAP (Yes-associated protein) signaling. However, little is known about the mechanisms by which Zyxin itself is regulated and how Zyxin affects Hippo–YAP activity. We first showed that Zyxin is phosphorylated by CDK1 during mitosis. Depletion of Zyxin resulted in significantly impaired colon cancer cell proliferation, migration, anchorage-independent growth, and tumor formation in xenograft animal models. Mitotic phosphorylation is required for Zyxin activity in promoting growth. Zyxin regulates YAP activity through the colon cancer oncogene CDK8. CDK8 knockout phenocopied Zyxin knockdown in colon cancer cells, while ectopic expression of CDK8 substantially restored the tumorigenic defects of Zyxin-depletion cells. Mechanistically, we showed that CDK8 directly phosphorylated YAP and promoted its activation. Fully activated YAP is required to support the growth in CDK8-knockout colon cancer cells in vitro and in vivo. Together, these observations suggest that Zyxin promotes colon cancer tumorigenesis in a mitotic-phosphorylation-dependent manner and through CDK8-mediated YAP activation.
Journal Article
Structured illumination microscopy with noise-controlled image reconstructions
2021
Super-resolution structured illumination microscopy (SIM) has become a widely used method for biological imaging. Standard reconstruction algorithms, however, are prone to generate noise-specific artifacts that limit their applicability for lower signal-to-noise data. Here we present a physically realistic noise model that explains the structured noise artifact, which we then use to motivate new complementary reconstruction approaches. True-Wiener-filtered SIM optimizes contrast given the available signal-to-noise ratio, and flat-noise SIM fully overcomes the structured noise artifact while maintaining resolving power. Both methods eliminate ad hoc user-adjustable reconstruction parameters in favor of physical parameters, enhancing objectivity. The new reconstructions point to a trade-off between contrast and a natural noise appearance. This trade-off can be partly overcome by further notch filtering but at the expense of a decrease in signal-to-noise ratio. The benefits of the proposed approaches are demonstrated on focal adhesion and tubulin samples in two and three dimensions, and on nanofabricated fluorescent test patterns.Super-resolution structured illumination microscopy reconstruction algorithms are described that can handle structured noise artifacts in two and three dimensions. The algorithms lack adjustable parameters and enhance objective representation of imaged objects.
Journal Article
Zyxin-Siah2–Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways
The evolutionarily conserved Hippo pathway is a regulator that controls organ size, cell growth and tissue homeostasis. Upstream signals of the Hippo pathway have been widely studied, but how microenvironmental factors coordinately regulate this pathway remains unclear. In this study, we identify LIM domain protein Zyxin, as a scaffold protein, that in response to hypoxia and TGF-β stimuli, forms a ternary complex with Lats2 and Siah2 and stabilizes their interaction. This interaction facilitates Lats2 ubiquitination and degradation, Yap dephosphorylation and subsequently activation. We show that Zyxin is required for TGF-β and hypoxia-induced Lats2 downregulation and deactivation of Hippo signalling in MDA-MB-231 cells. Depletion of Zyxin impairs the capability of cell migration, proliferation and tumourigenesis in a xenograft model. Zyxin is upregulated in human breast cancer and positively correlates with histological stages and metastasis. Our study demonstrates that Zyxin-Lats2–Siah2 axis may serve as a potential therapeutic target in cancer treatment.
Hippo and TGF-β are crucial signalling pathways involved in the development of various types of tumours. Here, the authors demonstrate that TGF-β can directly regulate Hippo pathway through the stabilization of the scaffold protein Zyxin, which forms a ternary complex with Siah2 and Lats2 promoting Lats2 degradation and YAP activation.
Journal Article
Dynamics and distribution of paxillin, vinculin, zyxin and VASP depend on focal adhesion location and orientation
2019
Focal adhesions (FAs) are multiprotein structures that link the intracellular cytoskeleton to the extracellular matrix. They mediate cell adhesion and migration, crucial to many (patho-) physiological processes. We examined in two cell types from different species the binding dynamics of functionally related FA protein pairs: paxillin and vinculin versus zyxin and VASP. In photobleaching experiments ~40% of paxillin and vinculin remained stably associated with a FA for over half an hour. Zyxin and VASP predominantly displayed more transient interactions. We show protein binding dynamics are influenced by FA location and orientation. In FAs located close to the edge of the adherent membrane paxillin, zyxin and VASP were more dynamic and had larger bound fractions. Zyxin and VASP were also more dynamic and had larger bound fractions at FAs perpendicular compared to parallel to this edge. Finally, we developed a photoconversion assay to specifically visualise stably bound proteins within subcellular structures and organelles. This revealed that while paxillin and vinculin are distributed evenly throughout FAs, their stably bound fractions form small clusters within the FA-complex. These clusters are more concentrated for paxillin than for vinculin and are mostly found at the proximal half of the FA where actin also enters.
Journal Article
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins
by
Badmalia, Maulik
,
Patel, Trushar
,
Siddiqui, M.
in
Computational Biology
,
Humans
,
Nuclear Export Signals
2021
Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.
Journal Article
Enhancement of Zyxin Promotes Skin Fibrosis by Regulating FAK/PI3K/AKT and TGF-β Signaling Pathways via Integrins
by
Wang, Jiucun
,
Pu, Weilin
,
Liu, Jing
in
1-Phosphatidylinositol 3-kinase
,
Adhesion
,
AKT protein
2023
Skin fibrosis is a common pathological manifestation in systemic sclerosis (SSc), keloid, and localized scleroderma (LS) characterized by fibroblast activation and excessive extracellular matrix (ECM) deposition. However, few effective drugs are available to treat skin fibrosis due to its unclear mechanisms. In our study, we reanalyzed skin RNA-sequencing data of Caucasian, African, and Hispanic SSc patients from the Gene Expression Omnibus (GEO) database. We found that the focal adhesion pathway was up-regulated and Zyxin appeared to be the primary focal adhesion protein involved in skin fibrosis, and we further verified its expression in Chinese skin tissues of several fibrotic diseases, including SSc, keloid, and LS. Moreover, we found Zyxin inhibition could significantly alleviate skin fibrosis using Zyxin knock-down and knock-out mice, nude mouse model and skin explants of human keloid. Double immunofluorescence staining showed that Zyxin was highly expressed in fibroblasts. Further analysis revealed pro-fibrotic gene expression and collagen production increased in Zyxin over-expressed fibroblasts, and decreased in Zyxin interfered SSc fibroblasts. In addition, transcriptome and cell culture analyses revealed Zyxin inhibition could effectively attenuate skin fibrosis by regulating the FAK/PI3K/AKT and TGF-β signaling pathways via integrins. These results suggest Zyxin appears a potential new therapeutic target for skin fibrosis.
Journal Article
Zyxin Gene Expression in Patients with Varying Degrees of Coronary Artery Disease
by
Sobecko, Ewelina
,
Słowiński, Jerzy
,
Wypych-Ślusarska, Agata
in
Acute Coronary Syndrome - genetics
,
Acute coronary syndromes
,
Aged
2025
Acute coronary syndrome (ACS) remains the leading cause of mortality in developed countries. Although recent advances have improved our understanding of the pathophysiology of ACS and its primary consequence, myocardial infarction, many questions remain regarding the molecular and cellular changes occurring during and after an infarction. This study aimed to evaluate the expression levels of the zyxin (ZYX) gene in patients with ACS, stable coronary artery disease (stable CAD), and healthy controls. RNA was extracted from PBMCs and analyzed by quantitative real-time PCR (qRT-PCR). Gene expression was measured using TaqMan Gene Expression Assays and the number of ZYX mRNA molecules was quantified based on qRT-PCR kinetics. Kruskal–Wallis was used to compare gene expression levels among the three groups. A significantly higher number of ZYX gene copies was observed in both the ACS and stable CAD groups than in healthy controls (p < 0.0001 and p < 0.001, respectively). A statistically significant difference was also observed between the ACS and stable CAD groups (p = 0.004). The increased expression of zyxin observed in patients with ACS and stable CAD may reflect cellular repair mechanisms activated in response to myocardial injury.
Journal Article
Zyxin (ZYX) promotes invasion and acts as a biomarker for aggressive phenotypes of human glioblastoma multiforme
2020
Glioblastoma multiforme (GBM) is characterized by highly invasive growth, which leads to extensive infiltration and makes complete tumor excision difficult. Since cytoskeleton proteins are related to leading processes and cell motility, and through analysis of public GBM databases, we determined that an actin-interacting protein, zyxin (
ZYX
), may involved in GBM invasion. Our own glioma cohort as well as the cancer genome atlas (TCGA), Rembrandt, and Gravendeel databases consistently showed that increased
ZYX
expression was related to tumor progression and poor prognosis of glioma patients. In vitro and in vivo experiments further confirmed the oncogenic roles of
ZYX
and demonstrated the role of
ZYX
in GBM invasive growth. Moreover, RNA-seq and mass-spectrum data from GBM cells with or without
ZYX
revealed that stathmin 1 (
STMN1
) was a potential target of
ZYX
. Subsequently, we found that both mRNA and protein levels of
STMN1
were positively regulated by
ZYX
. Functionally,
STMN1
not only promoted invasion of GBM cells but also rescued the invasion repression caused by
ZYX
loss. Taken together, our results indicate that high
ZYX
expression was associated with worse prognosis and highlighted that the
ZYX
-
STMN1
axis might be a potential therapeutic target for GBM.
The authors show that zyxin (ZYX) correlates with glioma progression and worse prognosis of patients and identified ZYX as a biomarker for diagnosis. This study provided insights on ZYX function and reveals that ZYX plays an important role in the invasion of glioblastoma through regulation of the e expression of STMN1, a cytoskeleton regulating protein.
Journal Article