Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
77
result(s) for
"abaca fibre"
Sort by:
A comprehensive review on the mechanical, physical, and thermal properties of abaca fibre for their introduction into structural polymer composites
by
Paul, Cherian
,
Kumar, Praveen
,
Kurien, Rittin Abraham
in
Automotive parts
,
Cellulose pulp
,
Fiber composites
2023
Abaca is a strong competitor among natural fibres for use as the reinforcement of polymer composites. Due to its high durability, considerable fibre length, flexibility and mechanical strength, abaca shows good potential as a renewable source of fibres for application in technological and industrial fields. Discussing the influence of various treatment strategies, such as alkali and silane, for the preparation of abaca-based composites results in the improvement of their properties over that of bare polymer materials and that of other synthetic fibres. The enhanced characteristics of abaca fibre reinforced composites are widely explored for a variety of applications in automotive and other industries. These include for example roping and woven fabrics, currency notes, cigarette filter papers, vacuum bags, tea bags, cellulose pulp for paper and packaging, and materials for automotive components, etc. In particular, the effective use of abaca fibre reinforced polymer composite in manufacturing external parts of cars, using therefore also thermoplastic matrices, has become popular. The gaps in research from the literature that show the scarcity of studies on topics such as simulation and designing of mechanical characteristics of abaca fibre composites constructed on polymer matrices, such as epoxy, polylactide, high density polyethylene, phenol formaldehyde and polyester are also highlighted. The results indicate that abaca is particularly flexible to be used in different sectors, in combination with various matrices, and in hybrid composites with various fibres. Further work would necessarily involve the larger consideration of abaca textiles with different areal weights in the production of composites, and a widespread introduction of abaca in datasets for the automated selection of natural fibres for composites reinforcement.
Journal Article
Unidirectional Abaca Fiber Reinforced Thermoplastic Starch Composite
by
Diaz, Leslie Joy L.
,
Vasquez, Jasmin Z.
in
Bioplastics
,
Compressive strength
,
Confidence intervals
2017
Unidirectional abaca fiber reinforced thermoplastic starch composite was prepared via compression molding by varying the fiber volume fraction, compression pressure and fiber treatment. Factorial analysis at 95% confidence level has shown that changing fiber volume from 5% to 10% has a significant effect on the tensile strength of the composite. A treatment-pressure interaction was also found to have significant effect on the tensile strength of the composite. Result of tensile test showed that composite fabricated using 6.89 MPa (1000 psi) compression pressure, 10% fiber volume, and treated fibers exhibited the highest tensile strength of 19.73MPa while composite fabricated using 6.89 MPa (1000 psi) compression pressure, 10% fiber volume and untreated fibers exhibited only a tensile strength of 12.30 MPa. Scanning electron microscopy (SEM) on the transverse cross section has shown that alkali treatment was able to improve the interfacial bond between the fibers and the thermoplastic starch matrix resulting to an increase in strength of the composite fabricated at 6.89 MPa (1000 psi). However, using a compression pressure of 13.79 MPa (2000 psi) during fabrication induced damage, i.e. internal cracking, on the alkali treated fibers, thereby reducing the strength of the composite.
Journal Article
The Improvement of the Tribological Behaviour of Chemically Treated Abaca Fibre-Reinforced Polymer Composites
2023
Abaca fibres that have excellent mechanical properties are widely applied in the production and preparation of eco-friendly polymer composites as reinforcement materials. However, the weak interfacial bonding property of the abaca fibre and composite matrix limits the further extended application of abaca fibre-reinforced polymer composites. In this research, the findings demonstrate that, compared to raw abaca fibres, the interfacial shear strength (IFSS) value between the treated fibre and matrix is improved by 32% to 86%. Moreover, chemically treated abaca fibres could not only improve the wear resistance of the polymer composites, but also could promote the formation of primary and secondary plateaus. The best wear resistance behaviour was demonstrated by the sample with abaca fibres treated with 3% NaOH and 5% silane solutions, which had a maximum reduction in the sum wear rate of 28.44%. This research will provide detail on theoretical guidance and technical support for the development of eco-friendly natural fibre-reinforced polymer composites.
Journal Article
Effect of a Chemical Treatment Series on the Structure and Mechanical Properties of Abaca Fiber (Musa textilis)
2020
This study investigates the relationships between the composition, cell wall microstructure, and mechanical properties of the abaca fiber. Raw abaca fibers have undergone a series of sequential chemical treatments (acetone/methanol, boiling water, EDTA, HCl, NaClO2, and NaOH) to selectively remove certain non-cellulosic components (NCCs) in the fiber, such as waxes, water-soluble fragments, pectin, and lignin in a step-by-step manner. Changes in composition, morphology, and mechanical properties were observed using FTIR spectroscopy and ion chromatography, digital microscope and SEM, and tensile tests, respectively. The raw fiber was composed of 23% NCCs, 18% hemicellulose, and 58% cellulose, and exhibited a 17.4 GPa Young’s modulus and a 444 MPa tensile strength. Furthermore, the raw abaca fibers demonstrated a linear tensile graph without yielding, and a planar fracture surface without fiber pull-outs, thus suggesting a highly elastic but brittle nature. At the end of the alkali treatment, the fibrillated fiber was 83% cellulose, yet the stiffness and strength dropped to 7.3 GPa and 55 MPa, respectively, as more components were removed, and microfibril relaxation and realignment have occurred. Load-bearing cellulose and hemicellulose accounted for 42% and 36% of the stiffness, respectively, due to –OH groups capable of hydrogen bonding. 63% of the strength was due to thenative NCC matrices, which contribute a significant role within the cell wall’s load-transfer activities.
Journal Article
A comprehensive study on physico-mechanical properties of non-metallic fibre reinforced SCC blended with metakaolin and alcofine
2022
This study presents a detailed experimental investigation on the effects incorporating non-metallic fibers in hybrid form in self-compacting concrete (SCC). In this regard SCC was prepared with Alccofine and Metakaolin as partial replacement for cement in 15% and 20% respectively along with the hybrid fibre combinations namely abaca fibres (0.25%, 0.5% & 0.75%), polypropylene fibres (0.5%, 1%, 1.5% & 2%) and glass fibres (0.5%, 1%, 1.5%, & 2%). The fresh properties of SCC with and without hybrid fibre combinations were assessed through the standard tests such as slump flow, J ring and V-funnel tests. The conventional mechanical tests such as compressive strength test, split tensile strength test and flexural strength test were performed at 7 and 28 days. The experimental results reveal that the fresh properties of SCC were highly influenced by alccofine and Metakaolin adopted in this research. Furthermore, that the hybrid combination of abaca with polypropylene and glass fibres improved the mechanical properties of SCC and in particular the mix with 1% glass fibre and 0.25% Abaca fibre had shown better flexural and tensile strength behaviour. Microstructure analyses were also done to confirm the improvement in mechanical properties. The Scanning Electron Microscope images of the mix with 1% glass fibre and 0.25% abaca fibre showed less voids presence and presence of more hydrated components conveying that the usage of hybrid fibres had restricted the propagation of cracks there by reducing the percentage of voids and the use of metakaolin and alcofine helping in forming hydrated components at earlier stage leading to better strength.
Journal Article
Investigation on effect of fibre hybridization and orientation on mechanical behaviour of natural fibre epoxy composite
by
Vijaya Ramnath, B
,
Kaliappan, P
,
Kesavan, R
in
Aerospace industry
,
Chemistry and Materials Science
,
Composite materials
2017
Nowadays bio fibre composites play a vital role by replacing conventional materials used in automotive and aerospace industries owing to their high strength to weight ratio, biodegradability and ease of production. This paper aims to find the effect of fibre hybridization and orientation on mechanical behaviour of composite fabricated with neem, abaca fibres and epoxy resin. Here, three varieties of composites are fabricated namely, composite 1 which consists of abaca fibre and glass fibre, composite 2, which consists of neem fibre and glass fibre, whereas composite 3 consists of abaca, neem fibres and glass fibres. In all the above three varieties, fibres are arranged in three types of orientations namely, horizontal (type I), vertical (type II) and 45
∘
inclination (type III). The result shows that composites made up of abaca and neem fibres with inclined orientation (45
∘
) have better mechanical properties when compared with other types of composites. In addition, morphological analysis is carried out using scanning electron microscope to know the fibre distribution, fibre pull out, fibre breakage and crack propagation on tested composites.
Journal Article
Performance assessment of surface modified natural fibre using NaOH in composite concrete
2023
Abaca fiber degradation in concrete owing to its alkaline nature decreases the strength of concrete. This research focuses on overcoming the degradation by alkaline treatment with sodium hydroxide (NaOH) to improve fiber performance. This study was completed with the extraction process of fiber, mechanical properties, micro-structural analysis of composite fiber concrete for both M30 and M40 grades, and durability performance if the fiber content, aspect ratio of fiber and molarities of Sodium Hydroxide were optimized using splitting tensile strength of the concrete matrix and it was found that the optimum percentage of fiber content was 1% at 12% alkali treatment. The composite concrete has achieved an increase of 2700 to 3100 kg m
−2
in split tensile strength with treated abaca fibers compared to untreated fiber concrete. In addition, treated abaca fiber concrete provides better performance in mechanical and durability studies. The binding nature of fiber concrete is better than that of conventional concrete, which is evidenced in microstructural analysis. This study ultimately concluded that the treated abaca fiber composite concrete is a better alternative to commercially available untreated abaca fibers and other natural fibers.
Journal Article
Comparison analysis of abaca fiber/polyester and abaca-e-glass/polyester hybrid composites to impact strength and its application to ballistic
2021
The aim of this study consentrates of mechanical properties of abaca fiber and compares with the hybrid fiber composite on using abaca-e-glass fiber as reinforcement for composites. The fibers were arranged to make a bidirectional ±45º fiber arrangements by using polyester as a matrix with hand lay-up method is used to manufacture the composite. Based on the impact test results showed that the abaca-E-glass/polyester has a higher strength than the abaca/polyester specimen. Therefore, the abaca-E-glass/polyester hybrid composite has a better ability to ballistic test.
Journal Article
Mechanical Properties of Abaca–Glass Fiber Composites Fabricated by Vacuum-Assisted Resin Transfer Method
by
Sudayon, Johanna Marie B.
,
Paglicawan, Marissa A.
,
Emolaga, Carlo S.
in
Computed tomography
,
Cracking (fracturing)
,
Energy consumption
2021
The application of natural fiber-reinforced composites is gaining interest in the automotive, aerospace, construction, and marine fields due to its advantages of being environmentally friendly and lightweight, having a low cost, and having a lower energy consumption during production. The incorporation of natural fibers with glass fiber hybrid composites may lead to some engineering and industrial applications. In this study, abaca/glass fiber composites were prepared using the vacuum-assisted resin transfer method (VARTM). The effect of different lamination stacking sequences of abaca–glass fibers on the tensile, flexural, and impact properties was evaluated. The morphological failure behavior of the fractured-tensile property was evaluated by 3D X-ray Computed Tomography and Scanning Electron Microscopy (SEM). The results of mechanical properties were mainly dependent on the volume fraction of abaca fibers, glass fibers, and the arrangement of stacking sequences in the laminates. The higher volume fraction of abaca fiber resulted in a decrease in mechanical properties causing fiber fracture, resin cracking, and fiber pullout due to poor bonding between the fibers and the matrix. The addition of glass woven roving in the composites increased the mechanical properties despite the occurrence of severe delamination between the abaca–strand mat glass fiber.
Journal Article