Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
992
result(s) for
"absorption barrier"
Sort by:
Experience in the use of a device to attach an anti-adhesion-absorption barrier film to the abdominal cavity in laparoscopic colorectal surgery
by
Kojima, Yutaka
,
Sakamoto, Kazuhiro
,
Mizukoshi, Kosuke
in
anti-adhesion–absorption barrier
,
attaching device
,
colorectal surgery
2020
The use of laparoscopic surgery is widespread worldwide and is becoming the standard procedure. Postoperative adhesion, which is one of the typical postoperative complications, is considered to be less likely to occur compared with open surgery. However, once complications, such as small bowel obstruction or chronic abdominal pain, occur due to adhesion, the minimal invasiveness can be greatly impaired, and it can also become costly from a medical economics perspective. In the past, anti-adhesion absorption barrier films have been used to prevent adhesion, but there are many cases in which laparoscopic techniques are required, depending on the site of intraperitoneal attachment. Herein, we report a device that can easily attach an absorbent barrier preparation.
Journal Article
Comparative Effects of Allulose, Fructose, and Glucose on the Small Intestine
by
Hanna Kobayashi
,
Mai Kantake
,
Ronaldo P. Ferraris
in
absorption barrier
,
allulose; fructose; glucose; small intestine; small intestinal function; nutrient digestion and absorption; intestinal barrier
,
Animals
2022
Despite numerous studies on the health benefits of the rare sugar allulose, its effects on intestinal mucosal morphology and function are unclear. We therefore first determined its acute effects on the small intestinal transcriptome using DNA microarray analysis following intestinal allulose, fructose and glucose perfusion in rats. Expression levels of about 8-fold more genes were altered by allulose compared to fructose and glucose perfusion, suggesting a much greater impact on the intestinal transcriptome. Subsequent pathway analysis indicated that nutrient transport, metabolism, and digestive system development were markedly upregulated, suggesting allulose may acutely stimulate these functions. We then evaluated whether allulose can restore rat small intestinal structure and function when ingested orally following total parenteral nutrition (TPN). We also monitored allulose effects on blood levels of glucagon-like peptides (GLP) 1 and 2 in TPN rats and normal mice. Expression levels of fatty acid binding and gut barrier proteins were reduced by TPN but rescued by allulose ingestion, and paralleled GLP-2 secretion potentially acting as the mechanism mediating the rescue effect. Thus, allulose can potentially enhance disrupted gut mucosal barriers as it can more extensively modulate the intestinal transcriptome relative to glucose and fructose considered risk factors of metabolic disease.
Journal Article
Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation
by
Gundelund Nielsen, Ditte Søvsø
,
Gregersen, Søren
,
Ingerslev, Anne Krog
in
absorption barrier
,
Animals
,
Bacteria - metabolism
2018
A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.
Journal Article
SCFA: mechanisms and functional importance in the gut
by
Martin-Gallausiaux, Camille
,
Larraufie, Pierre
,
Lapaque, Nicolas
in
absorption barrier
,
Amino acids
,
Bacteria
2021
In recent years, the importance of the gut microbiota in human health has been revealed and many publications have highlighted its role as a key component of human physiology. Owing to the use of modern sequencing approaches, the characterisation of the microbiome in healthy individuals and in disease has demonstrated a disturbance of the microbiota, or dysbiosis, associated with pathological conditions. The microbiota establishes a symbiotic crosstalk with their host: commensal microbes benefit from the nutrient-rich environment provided by the gut and the microbiota produces hundreds of proteins and metabolites that modulate key functions of the host, including nutrient processing, maintenance of energy homoeostasis and immune system development. Many bacteria-derived metabolites originate from dietary sources. Among them, an important role has been attributed to the metabolites derived from the bacterial fermentation of dietary fibres, namely SCFA linking host nutrition to intestinal homoeostasis maintenance. SCFA are important fuels for intestinal epithelial cells (IEC) and regulate IEC functions through different mechanisms to modulate their proliferation, differentiation as well as functions of subpopulations such as enteroendocrine cells, to impact gut motility and to strengthen the gut barrier functions as well as host metabolism. Recent findings show that SCFA, and in particular butyrate, also have important intestinal and immuno-modulatory functions. In this review, we discuss the mechanisms and the impact of SCFA on gut functions and host immunity and consequently on human health.
Journal Article
Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health
by
Rastall, Robert A.
,
Monteagudo-Mera, Andrea
,
Chatzifragkou, Afroditi
in
absorption barrier
,
Adhesion
,
Antagonism
2019
Adhesion ability to the host is a classical selection criterion for potential probiotic bacteria that could result in a transient colonisation that would help to promote immunomodulatory effects, as well as stimulate gut barrier and metabolic functions. In addition, probiotic bacteria have a potential protective role against enteropathogens through different mechanisms including production of antimicrobial compounds, reduction of pathogenic bacterial adhesion and competition for host cell binding sites. The competitive exclusion by probiotic bacteria has a beneficial effect not only on the gut but also in the urogenital tract and oral cavity. On the other hand, prebiotics may also act as barriers to pathogens and toxins by preventing their adhesion to epithelial receptors. In vitro studies with different intestinal cell lines have been widely used along the last decades to assess the adherence ability of probiotic bacteria and pathogen antagonism. However, extrapolation of these results to in vivo conditions still remains unclear, leading to the need of optimisation of more complex in vitro approaches that include interaction with the resident microbiota to address the current limitations. The aim of this mini review is to provide a comprehensive overview on the potential effect of the adhesive properties of probiotics and prebiotics on the host by focusing on the most recent findings related with adhesion and immunomodulatory and antipathogenic effect on human health.
Journal Article
Bile Acid–Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside
2021
Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder of the gastrointestinal tract, with increasing prevalence, and its pathogenesis remains unclear. Accumulating evidence suggested that gut microbiota and bile acids play pivotal roles in intestinal homeostasis and inflammation. Patients with IBD exhibit decreased microbial diversity and abnormal microbial composition marked by the depletion of phylum Firmicutes (including bacteria involved in bile acid metabolism) and the enrichment of phylum Proteobacteria. Dysbiosis leads to blocked bile acid transformation. Thus, the concentration of primary and conjugated bile acids is elevated at the expense of secondary bile acids in IBD. In turn, bile acids could modulate the microbial community. Gut dysbiosis and disturbed bile acids impair the gut barrier and immunity. Several therapies, such as diets, probiotics, prebiotics, engineered bacteria, fecal microbiota transplantation and ursodeoxycholic acid, may alleviate IBD by restoring gut microbiota and bile acids. Thus, the bile acid–gut microbiota axis is closely connected with IBD pathogenesis. Regulation of this axis may be a novel option for treating IBD.
Journal Article
The Microbiota–Gut–Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame?
by
Bukelskienė, Virginija
,
Megur, Ashwinipriyadarshini
,
Burokas, Aurelijus
in
absorption barrier
,
Advertising executives
,
Alzheimer Disease - etiology
2020
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Journal Article
Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome
by
Vodnar, Dan Cristian
,
Mitrea, Laura
,
Simon, Elemer
in
Abdomen
,
absorption barrier
,
Antimicrobial agents
2021
Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota–gut–brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.
Journal Article
A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier
by
Feng Fengqin
,
Liu Wangxin
,
Luo Xianliang
in
Diabetes
,
Diabetes mellitus (insulin dependent)
,
Digestive system
2021
PurposeIn previous studies, short-chain fatty acids (SCFAs) have been found to regulate gut microbiota and change gut barrier status, and the potential positive effects of SCFAs on inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1D), and non-alcoholic fatty liver disease (NAFLD) have also been found, but the role of SCFAs in these three diseases is not clear. This review aims to summarize existing evidence on the effects of SCFAs on IBD, T1D, and NHFLD, and correlates them with gut barrier and gut microbiota (gut microbiota barrier).MethodsA literature search in PubMed, Web of Science, Springer, and Wiley Online Library up to October 2020 was conducted for all relevant studies published.ResultsThis is a retrospective review of 150 applied research articles or reviews. The destruction of gut barrier may promote the development of IBD, T1D, and NAFLD. SCFAs seem to maintain the gut barrier by promoting the growth of intestinal epithelial cells, strengthening the intestinal tight connection, and regulating the activities of gut microbiota and immune cells, which might result possible beneficial effects on the above three diseases at a certain dose.ConclusionsInfluencing gut barrier health may be a bridge for SCFAs (especially butyrate) to have positive effects on IBD, T1D, and NAFLD. It is expected that this article can provide new ideas for the subsequent research on the treatment of diseases by SCFAs and help SCFAs be better applied to precise and personalized treatment.
Journal Article
Extensive Summary of the Important Roles of Indole Propionic Acid, a Gut Microbial Metabolite in Host Health and Disease
2022
Increasing evidence suggests that metabolites produced by the gut microbiota play a crucial role in host–microbe interactions. Dietary tryptophan ingested by the host enters the gut, where indole-like metabolites such as indole propionic acid (IPA) are produced under deamination by commensal bacteria. Here, we summarize the IPA-producing bacteria, dietary patterns on IPA content, and functional roles of IPA in various diseases. IPA can not only stimulate the expression of tight junction (TJ) proteins to enhance gut barrier function and inhibit the penetration of toxic factors, but also modulate the immune system to exert anti-inflammatory and antioxidant effects to synergistically regulate body physiology. Moreover, IPA can act on target organs through blood circulation to form the gut–organ axis, which helps maintain systemic homeostasis. IPA shows great potential for the diagnosis and treatment of various clinical diseases, such as NAFLD, Alzheimer’s disease, and breast cancer. However, the therapeutic effect of IPA depends on dose, target organ, or time. In future studies, further work should be performed to explore the effects and mechanisms of IPA on host health and disease to further improve the existing treatment program.
Journal Article