Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
185
result(s) for
"adakites"
Sort by:
Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation
2013
The pressure–temperature (
P
–
T
) conditions for producing adakite/tonalite–trondhjemite–granodiorite (TTG) magmas from lower crust compositions are still open to debate. We have carried out partial melting experiments of mafic lower crust in the piston-cylinder apparatus at 10–15 kbar and 800–1,050 °C to investigate the major and trace elements of melts and residual minerals and further constrain the
P
–
T
range appropriate for adakite/TTG formation. The experimental residues include the following: amphibolite (plagioclase + amphibole ± garnet) at 10–15 kbar and 800 °C, garnet granulite (plagioclase + amphibole + garnet + clinopyroxene + orthopyroxene) at 12.5 kbar and 900 °C, two-pyroxene granulite (plagioclase + clinopyroxene + orthopyroxene ± amphibole) at 10 kbar and 900 °C and 10–12.5 kbar and 1,000 °C, garnet pyroxenite (garnet + clinopyroxene ± amphibole) at 13.5–15 kbar and 900–1,000 °C, and pyroxenite (clinopyroxene + orthopyroxene) at 15 kbar and 1,050 °C. The partial melts change from granodiorite to tonalite with increasing melt proportions. Sr enrichment occurs in partial melts in equilibrium with <20 wt% plagioclase, whereas depletions of Ti, Sr, and heavy rare earth elements (HREE) occur relative to the starting material when the amounts of residual amphibole, plagioclase, and garnet are >20 wt%, respectively. Major elements and trace element patterns of partial melts produced by 10–40 wt% melting of lower crust composition at 10–12.5 kbar and 800–900 °C and 15 kbar and 800 °C closely resemble adakite/TTG rocks. TiO
2
contents of the 1,000–1,050 °C melts are higher than that of pristine adakite/TTG. In comparison with natural adakite/TTG, partial melts produced at 10–12.5 kbar and 1,000 °C and 15 kbar and 1,050 °C have elevated HREE, whereas partial melts at 13.5–15 kbar and 900–1,000 °C in equilibrium with >20 wt% garnet have depressed Yb and elevated La/Yb and Gd/Yb. It is suggested that the most appropriate
P
–
T
conditions for producing adakite/TTG from mafic lower crust are 800–950 °C and 10–12.5 kbar (corresponding to a depth of 30–40 km), whereas a depth of >45–50 km is unfavorable. Consequently, an overthickened crust and eclogite residue are not necessarily required for producing adakite/TTG from lower crust. The lower crust delamination model, which has been embraced for intra-continental adakite/TTG formation, should be reappraised.
Journal Article
Adakites, High-Nb Basalts and Copper–Gold Deposits in Magmatic Arcs and Collisional Orogens: An Overview
by
Berdnikov, Nikolai
,
Kepezhinskas, Nikita
,
Kepezhinskas, Pavel
in
adakite–mantle interaction
,
Amphiboles
,
Anhydrite
2022
Adakites are Y- and Yb-depleted, SiO2- and Sr-enriched rocks with elevated Sr/Y and La/Yb ratios originally thought to represent partial melts of subducted metabasalt, based on their association with the subduction of young (<25 Ma) and hot oceanic crust. Later, adakites were found in arc segments associated with oblique, slow and flat subduction, arc–transform intersections, collision zones and post-collisional extensional environments. New models of adakite petrogenesis include the melting of thickened and delaminated mafic lower crust, basalt underplating of the continental crust and high-pressure fractionation (amphibole ± garnet) of mantle-derived, hydrous mafic melts. In some cases, adakites are associated with Nb-enriched (10 ppm < Nb < 20 ppm) and high-Nb (Nb > 20 ppm) arc basalts in ancient and modern subduction zones (HNBs). Two types of HNBs are recognized on the basis of their geochemistry. Type I HNBs (Kamchatka, Honduras) share N-MORB-like isotopic and OIB-like trace element characteristics and most probably originate from adakite-contaminated mantle sources. Type II HNBs (Sulu arc, Jamaica) display high-field strength element enrichments in respect to island-arc basalts coupled with enriched, OIB-like isotopic signatures, suggesting derivation from asthenospheric mantle sources in arcs. Adakites and, to a lesser extent, HNBs are associated with Cu–Au porphyry and epithermal deposits in Cenozoic magmatic arcs (Kamchatka, Phlippines, Indonesia, Andean margin) and Paleozoic-Mesozoic (Central Asian and Tethyan) collisional orogens. This association is believed to be not just temporal and structural but also genetic due to the hydrous (common presence of amphibole and biotite), highly oxidized (>ΔFMQ > +2) and S-rich (anhydrite in modern Pinatubo and El Chichon adakite eruptions) nature of adakite magmas. Cretaceous adakites from the Stanovoy Suture Zone in Far East Russia contain Cu–Ag–Au and Cu–Zn–Mo–Ag alloys, native Au and Pt, cupriferous Ag in association witn barite and Ag-chloride. Stanovoy adakites also have systematically higher Au contents in comparison with volcanic arc magmas, suggesting that ore-forming hydrothermal fluids responsible for Cu–Au(Mo–Ag) porphyry and epithermal mineralization in upper crustal environments could have been exsolved from metal-saturated, H2O–S–Cl-rich adakite magmas. The interaction between depleted mantle peridotites and metal-rich adakites appears to be capable of producing (under a certain set of conditions) fertile sources for HNB melts connected with some epithermal Au (Porgera) and porphyry Cu–Au–Mo (Tibet, Iran) mineralized systems in modern and ancient subduction zones.
Journal Article
Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes
by
Eissen, J.-P.
,
Martin, H.
,
Koga, K. T.
in
Crystallization
,
Earth and Environmental Science
,
Earth Sciences
2010
Examination of an extensive major and trace element database for about 700 whole rocks from the Ecuadorian Andes reveals series of local trends typified by three volcanoes: Iliniza and Pichincha from the Western Cordillera and Tungurahua from the Eastern Cordillera. These local trends are included in a more scattered global trend that reflects typical across-arc chemical variations. The scatter of the global trend is attributed to greater crustal contributions or decreasing melt fractions. Trace element modelling shows that the local trends are consistent with mixing, and not with any fractional crystallization or progressive melting dominated processes. These local trends are extendable to include samples from other Ecuadorian volcanoes, suggesting that mixing processes are dominant throughout the region. Mixing model using trace and major element analyses identifies two end-members: low-silica, basaltic and high-silica, dacitic magmas. It also shows that mixing occurred between magmas after their segregation, rather than earlier mixing between the solid sources prior to melting. As a consequence, there must exist efficient magma-mixing processes that can overcome the obstacles to mixing magmas with contrasting physical properties, and can produce series of hybrid liquids over regional-scale. Model calculations show that estimated silicic end-members are primary magmas and are not co-magmatic derivatives of the corresponding mafic end-members. Lavas of Ecuadorian volcanoes are likely originated from magmas of contrasting origins, such as basaltic magmas generated by fluxed melting of peridotites in the mantle wedge and dacitic, adakite-type magmas originating from the slab or the mafic lower crust.
Journal Article
Ridge subduction and porphyry copper-gold mineralization: An overview
by
Sun, WeiDong
,
Yang, XiaoYong
,
Liang, HuaYing
in
Continental crust
,
Copper
,
Earth and Environmental Science
2010
Many large porphyry Cu-Au deposits are connected to adakitic rocks known to be closely associated with ridge subduction. For example, there are several subducting ridges along the east Pacific margin, e.g., in Chile, Peru, and South America, most of which are associated with large porphyry Cu-Au deposits. In contrast, there are much fewer ridge subductions on the west Pacific margin and porphyry Cu-Au deposits are much less there, both in terms of tonnage and the number of deposits. Given that Cu and Au are moderately incompatible elements, oceanic crust has much higher Cu-Au concentrations than the mantle and the continental crust, and thus slab melts with their diagnostic adakitic chemistry have systematically higher Cu and Au, which is favorable for mineralization. Considering the geotherm of subducting slabs in the Phanerozoic, ridge subduction is the most favorable tectonic setting for this. Therefore, slab melting is the likely link in the spatial association between ridge subduction and Cu-Au deposits. Geochemical signatures of slab melting and hence maybe ridge subduction in less eroded regions in eastern China, the central Asian orogenic belt etc. may indicate important exploration targets for large porphyry Cu-Au deposits.
Journal Article
A case for hornblende dominated fractionation of arc magmas: the Chelan Complex (Washington Cascades)
by
Dessimoz, Mathias
,
Müntener, Othmar
,
Ulmer, Peter
in
Continental crust
,
Crystallography
,
Earth and Environmental Science
2012
Amphibole fractionation in the deep roots of subduction-related magmatic arcs is a fundamental process for the generation of the continental crust. Field relations and geochemical data of exposed lower crustal igneous rocks can be used to better constrain these processes. The Chelan Complex in the western U.S. forms the lowest level of a 40-km thick exposed crustal section of the North Cascades and is composed of olivine websterite, pyroxenite, hornblendite, and dominantly by hornblende gabbro and tonalite. Magmatic breccias, comb layers and intrusive contacts suggest that the Chelan Complex was build by igneous processes. Phase equilibria, textural observations and mineral chemistry yield emplacement pressures of ∼1.0 GPa followed by isobaric cooling to 700°C. The widespread occurrence of idiomorphic hornblende and interstitial plagioclase together with the lack of Eu anomalies in bulk rock compositions indicate that the differentiation is largely dominated by amphibole. Major and trace element modeling constrained by field observations and bulk chemistry demonstrate that peraluminous tonalite could be derived by removing successively 3% of olivine websterite, 12% of pyroxene hornblendite, 33% of pyroxene hornblendite, 19% of gabbros, 15% of diorite and 2% tonalite. Peraluminous tonalite with high Sr/
Y
that are worldwide associated with active margin settings can be derived from a parental basaltic melt by crystal fractionation at high pressure provided that amphibole dominates the fractionation process. Crustal assimilation during fractionation is thus not required to generate peraluminous tonalite.
Journal Article
Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications
by
Zhou, Mei-Fu
,
Vasconcelos, Paulo
,
de Souza, Zorano Sérgio
in
Basalt
,
Cretaceous
,
Crystallization
2009
Late Mesozoic dioritic and quartz dioritic plutons are widespread in the Daye region, eastern Yangtze craton, eastern China. Detailed geochronological, geochemical, and Sr–Nd isotopic studies have been undertaken for most of these plutons, in an attempt to provide a comprehensive understanding in the age, genesis and geodynamical control of the extensive magmatism. SHRIMP and LA-ICP-MS zircon U–Pb dating indicate that the plutons were emplaced in the range of latest Jurassic (ca. 152 Ma) to early Cretaceous (ca. 132 Ma), which was followed by dyke emplacement between 127 and 121 Ma and volcanism during the 130–113 Ma interval. Both diorites and quartz diorites are sodic, metaluminous, high-K calc-alkaline, and characterized by strongly fractionated, sub-parallel REE patterns without obvious Eu anomalies. The rocks are enriched in highly incompatible elements and large ion lithophile elements, but depleted in high field strength elements. Samples of diorite and quartz diorite have similar Sr–Nd isotopic compositions that are consistent with the early Cretaceous basalts and mafic intrusions throughout the eastern Yangtze craton. The geochemical and isotopic data, together with results of geochemical modeling, indicate an enriched mantle source for the plutonic rocks. The quartz diorites have geochemical signatures resembling adakites, such as high Al
2
O
3
(15–19 wt.%), Sr (630–2,080 ppm), Na
2
O (>3.5 wt.%), negative Nb–Ta anomalies, low Y (7–19 ppm), Yb (0.5–1.8 ppm), Sc (5–15 ppm), and resultant high Sr/Y (45–200) and La/Yb (31–63) ratios. Genesis of the adakitic quartz diorites is best explained in terms of low-pressure intracrustal fractional crystallization of cumulates consisting of hornblende, plagioclase, K-feldspar, magnetite, and apatite from mantle-derived dioritic magmas. Mantle-derived magmatism broadly coeval with that of the Daye region also is widespread in other regions of the eastern Yangtze craton, reflecting large-scale melting of the lithospheric mantle during the Late Mesozoic. The large-scale magmatism was most likely driven by lithospheric extension associated with thinning of lithospheric mantle beneath the eastern China continent.
Journal Article
Calcium isotope evidence for early Archaean carbonates and subduction of oceanic crust
2021
Continents are unique to Earth and played a role in coevolution of the atmosphere, hydrosphere, and biosphere. Debate exists, however, regarding continent formation and the onset of subduction-driven plate tectonics. We present Ca isotope and trace-element data from modern and ancient (4.0 to 2.8 Ga) granitoids and phase equilibrium models indicating that Ca isotope fractionations are dominantly controlled by geothermal gradients. The results require gradients of 500–750 °C/GPa, as found in modern (hot) subduction-zones and consistent with the operation of subduction throughout the Archaean. Two granitoids from the Nuvvuagittuq Supracrustal Belt, Canada, however, cannot be explained through magmatic processes. Their isotopic signatures were likely inherited from carbonate sediments. These samples (> 3.8 Ga) predate the oldest known carbonates preserved in the rock record and confirm that carbonate precipitation in Eoarchaean oceans provided an important sink for atmospheric CO
2
. Our results suggest that subduction-driven plate tectonic processes started prior to ~3.8 Ga.
Phase equilibrium modelling combined with Ca isotope measurements in ancient granitoids demonstrates that subduction of oceanic crust occurred repeatedly throughout the Archaean and that carbonate sediments were present in early Eoarchaean oceans (>3.8 billion years).
Journal Article
Adakitic rocks at convergent plate boundaries: Compositions and petrogenesis
2020
Adakitic rocks are intermediate-acid magmatic rocks characterized by enrichment in light rare-earth elements, depletion in heavy rare-earth elements, positive to negligible Eu and Sr anomalies, and high La/Yb and Sr/Y ratios. Cenozoic adakitic rocks generated by partial melting of subducted oceanic crust (slab) under eclogite-facies conditions (i.e., the original definition of “adakite”) occur mainly in Pacific Rim volcanic arcs (intra-oceanic, continental, and continental-margin island arcs), whereas those generated by partial melting of thickened lower crust occur mainly in Tethyan Tibetan collisional orogens. In volcanic arcs, adakitic melts derived from the melting of subducted oceanic crust metasomatize the mantle wedge to form a unique rock suite comprising adakite-adakite-type high-Mg andesite-Piip-type high-Mg andesite-Nb-rich basalt-boninite. This suite differs from the basalt-andesite-dacite-rhyolite suite formed from mantle wedge metasomatized by fluids derived from subducted oceanic crust. Previously published data indicate that partial melting of mafic rocks can generate adakitic magmas under pressure, temperature, and hydrous conditions of 1.2–3.0 GPa, 800–1000°C, and 1.5–6.0 wt.% H
2
O, respectively, leaving residual minerals of garnet and rutile with little or no plagioclase. Cenozoic Au and Cu deposits occur proximally to adakitic rocks, with host rocks of some deposits actually being adakitic rocks. Adakitic rocks thus have important implications for both deep-Earth dynamics and Cu-Au mineralization/exploration. Although studies of Cenozoic adakitic rocks have made many important advances, there remain weaknesses in some important areas such as their tectonic settings, petrogenesis, magma sources, melt-mantle interactions of pre-Cenozoic adakitic rocks, and their relationship with the onset of plate tectonics and crustal growth. Future research directions are likely to involve (1) the generation of adakitic magmas by experimental simulations of partial melting of different types of rock (including intermediate-acid rocks) and magma fractional crystallization at different temperatures and pressures, (2) the relationship between magma reservoir evolution and the formation of adakitic rocks, (3) the tectonic setting and petrogenesis of pre-Cenozoic adakitic rocks and related geodynamic processes, (4) interactions between slab melts and the mantle wedge, (5) the formation of Archean adakitic tonalite-trondhjemite-granodiorite and its link to the onset of plate tectonics and crustal growth, and (6) the relationship between the formation of adakitic rocks and metal mineralization in different tectonic settings.
Journal Article
Porphyry Copper Deposit Formation: Identifying Garnet and Amphibole Fractionation With REE Pattern Curvature Modeling
2023
Porphyry copper ore‐forming intrusions are distinguished from barren arc magmas by high oxidation state and “adakitic” high Sr/Y and La/Yb. Controversy over petrogenesis of adakites has centered on ambiguities in interpretation of their steep rare earth element (REE) patterns, and on whether garnet participates in their petrogenesis. Lambda (λ) coefficients deconvolute subtle differences in REE pattern curvature, providing a more quantitative method to explore mineral fractionation processes. Here, we use trace element and numerical λ coefficient modeling to assess the relative influence of amphibole, garnet, and plagioclase in the petrogenesis of porphyry ore‐forming intrusions. We find that garnet‐fractionation trends are not evident in REE patterns of many adakitic porphyry‐forming intrusions. Instead, porphyry‐forming intrusions in the western Pacific and Eocene porphyry‐forming intrusions in northern Chile have REE patterns consistent with a garnet‐free, amphibole‐dominated cumulate. Traditional element ratios such at Dy/Dy*, LaN/YbN, and DyN/YbN are poor discriminants for garnet or amphibole fractionation. Plain Language Summary Copper is a crucial metal for electrification and emission‐free energy generation. Copper is primarily sourced from active and extinct volcanic mountain chains. The minerals forming in the root zones of these volcanoes are crucial for ore formation processes, but identification of the exact minerals involved in these processes is still debated. We use a novel method of detecting small variations in the chemical signature of the rare earth elements, combined with numerical modeling of mineral crystallization to distinguish the participation of two minerals, garnet and amphibole. We show that amphibole is ubiquitous whereas garnet only occurs in some deposits. Therefore, garnet fractionation is not necessary for copper deposit formation as has been previously suggested. Key Points Analysis of rare earth element pattern curvature distinguishes between amphibole and garnet fractionation better than element ratios like Dy/Yb or Dy/Dy* Polybaric differentiation or plagioclase fractionation is unlikely to overprint a pre‐existing garnet signature We find that garnet fractionation is not necessary for porphyry copper deposit formation
Journal Article
Sr–Nd isotopes of Sabalan Volcano, NW Iran: insights into the origin of collisional adakites and geodynamic implications
by
Saitoh, Yu
,
Ducea, Mihai N.
,
Ghalamghash, Jalil
in
Asthenosphere
,
Convection
,
Crystallization
2023
Late Miocene-Quaternary adakitic rocks are widely distributed in northwestern Iran and are a key component of magmatism in the Turkish–Iranian Plateau of the collision zone between Eurasia and Arabia. Igneous rocks with adakitic affinity are distributed over large parts of northwestern Iran, eastern Turkey, and the Lesser Caucasus, and post-date a presumed slab break-off event at c. 10 Ma. Here, we present whole-rock Sr–Nd isotopic data for 4.5–0.149 Myr adakitic rocks of Sabalan volcano, NW Iran. These rocks are characterized by near-identical
87
Sr/
86
Sr = 0.7044 to 0.7045 and ɛNd = + 2.24 to + 2.76. This is interpreted to indicate that Sabalan magmas were primarily generated by melting juvenile intrusions at the base of thickened lower crust and that assimilation of upper continental crustal rocks only played a minor role in their evolution relative to fractional crystallization. The delay between slab break-off beneath the Neo-Tethyan suture zone and magmatic activity at Sabalan is indicative for asthenospheric melting being triggered by small-scale mantle convection underneath the Turkish-Iranian Plateau. A preferred scenario is that the detached slab heated up in the mantle causing dehydration, and ascending fluids consequently lowered the viscosity of the mantle. Subsequently, the delaminated lower lithosphere was replaced by asthenospheric mantle which heated and partially melted lower crustal rocks to generate adakitic magmas. Collectively, these events occurred after a significant temporal hiatus that followed the earlier slab break-off event when remnants of subducted Neo-Tethyan lithosphere became detached.
Journal Article