Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,326
result(s) for
"aging mechanism"
Sort by:
Capacity Degradation and Aging Mechanisms Evolution of Lithium-Ion Batteries under Different Operation Conditions
by
Zhang, Yongzhi
,
Luo, Guoqing
,
Tang, Aihua
in
Aging
,
aging mechanisms evolution
,
aging mechanisms interaction
2023
Since lithium-ion batteries are rarely utilized in their full state-of-charge (SOC) range (0–100%); therefore, in practice, understanding the performance degradation with different SOC swing ranges is critical for optimizing battery usage. We modeled battery aging under different depths of discharge (DODs), SOC swing ranges and temperatures by coupling four aging mechanisms, including the solid–electrolyte interface (SEI) layer growth, lithium (li) plating, particle cracking, and loss of active material (LAM) with a P2D model. Additionally, the mechanisms causing accelerated capacity to drop near a battery’s end of life (EOL) were investigated systematically. The results indicated that when the battery operated with a high SOC range, the capacity was more prone to accelerated degradation near the EOL. Among the four degradation mechanisms, li plating was mainly sensitive to the operation temperature and SOC swing ranges, while the SEI growth was mainly sensitive to temperature. Furthermore, there was an inhibitory interaction between li plating and SEI growth, as well as positive feedback between LAM and particle cracking during battery aging. Additionally, we discovered that the extremely low local porosity around the anode separator could cause the ‘knee point’ of capacity degradation.
Journal Article
Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview
2021
Understanding the aging mechanism for lithium-ion batteries (LiBs) is crucial for optimizing the battery operation in real-life applications. This article gives a systematic description of the LiBs aging in real-life electric vehicle (EV) applications. First, the characteristics of the common EVs and the lithium-ion chemistries used in these applications are described. The battery operation in EVs is then classified into three modes: charging, standby, and driving, which are subsequently described. Finally, the aging behavior of LiBs in the actual charging, standby, and driving modes are reviewed, and the influence of different working conditions are considered. The degradation mechanisms of cathode, electrolyte, and anode during those processes are also discussed. Thus, a systematic analysis of the aging mechanisms of LiBs in real-life EV applications is achieved, providing practical guidance, methods to prolong the battery life for users, battery designers, vehicle manufacturers, and material recovery companies.
Journal Article
New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms
2021
Abstract
The elderly population is increasing faster than other segments of the population throughout the world. Age is the leading predictor for most chronic diseases and disorders, multimorbidity, geriatric syndromes, and impaired ability to recover from accidents or illnesses. Enhancing the duration of health and independence, termed healthspan, would be more desirable than extending lifespan merely by prolonging the period of morbidity toward the end of life. The geroscience hypothesis posits that healthspan can be extended by targeting fundamental aging mechanisms, rather than attempting to address each age-related disease one at a time, only so the afflicted individual survives disabled and dies shortly afterward of another age-related disease. These fundamental aging mechanisms include, among others, chronic inflammation, fibrosis, stem cell/ progenitor dysfunction, DNA damage, epigenetic changes, metabolic shifts, destructive metabolite generation, mitochondrial dysfunction, misfolded or aggregated protein accumulation, and cellular senescence. These processes appear to be tightly interlinked, as targeting any one appears to affect many of the rest, underlying our Unitary Theory of Fundamental Aging Mechanisms. Interventions targeting many fundamental aging processes are being developed, including dietary manipulations, metformin, mTOR (mechanistic target of rapamycin) inhibitors, and senolytics, which are in early human trials. These interventions could lead to greater healthspan benefits than treating age-related diseases one at a time. To illustrate these points, we focus on cellular senescence and therapies in development to target senescent cells. Combining interventions targeting aging mechanisms with disease-specific drugs could result in more than additive benefits for currently difficult-to-treat or intractable diseases. More research attention needs to be devoted to targeting fundamental aging processes.
Journal Article
Aging Mechanism and Models of Supercapacitors: A Review
2023
Electrochemical supercapacitors are a promising type of energy storage device with broad application prospects. Developing an accurate model to reflect their actual working characteristics is of great research significance for rational utilization, performance optimization, and system simulation of supercapacitors. This paper presents the fundamental working principle and applications of supercapacitors, analyzes their aging mechanism, summarizes existing supercapacitor models, and evaluates the characteristics and application scope of each model. By examining the current state and limitations of supercapacitor modeling research, this paper identifies future development trends and research focuses in this area.
Journal Article
Investigation of Polymer Aging Mechanisms Using Molecular Simulations: A Review
by
Yang, Rui
,
Lu, Diannan
,
Zhang, Fan
in
Chemical bonds
,
Chemical reactions
,
Composite materials
2023
Aging has a serious impact on the properties of functional polymers. Therefore, it is necessary to study the aging mechanism to prolong the service and storage life of polymer-based devices and materials. Due to the limitations of traditional experimental methods, more and more studies have adopted molecular simulations to analyze the intrinsic mechanisms of aging. In this paper, recent advances in molecular simulations of the aging of polymers and their composites are reviewed. The characteristics and applications of commonly used simulation methods in the study of the aging mechanisms (traditional molecular dynamics simulation, quantum mechanics, and reactive molecular dynamics simulation) are outlined. The current simulation research progress of physical aging, aging under mechanical stress, thermal aging, hydrothermal aging, thermo-oxidative aging, electric aging, aging under high-energy particle impact, and radiation aging is introduced in detail. Finally, the current research status of the aging simulations of polymers and their composites is summarized, and the future development trend has been prospected.
Journal Article
Tricarboxylic Acid Cycle Intermediates and Individual Ageing
2024
Anti-ageing biology and medicine programmes are a focus of genetics, molecular biology, immunology, endocrinology, nutrition, and therapy. This paper discusses metabolic therapies aimed at prolonging longevity and/or health. Individual components of these effects are postulated to be related to the energy supply by tricarboxylic acid (TCA) cycle intermediates and free radical production processes. This article presents several theories of ageing and clinical descriptions of the top markers of ageing, which define ageing in different categories; additionally, their interactions with age-related changes and diseases related to α-ketoglutarate (AKG) and succinate SC formation and metabolism in pathological states are explained. This review describes convincingly the differences in the mitochondrial characteristics of energy metabolism in animals, with different levels (high and low) of physiological reactivity of functional systems related to the state of different regulatory systems providing oxygen-dependent processes. Much attention is given to the crucial role of AKG and SC in the energy metabolism in cells related to amino acid synthesis, epigenetic regulation, cell stemness, and differentiation, as well as metabolism associated with the development of pathological conditions and, in particular, cancer cells. Another goal was to address the issue of ageing in terms of individual characteristics related to physiological reactivity. This review also demonstrated the role of the Krebs cycle as a key component of cellular energy and ageing, which is closely associated with the development of various age-related pathologies, such as cancer, type 2 diabetes, and cardiovascular or neurodegenerative diseases where the mTOR pathway plays a key role. This article provides postulates of postischaemic phenomena in an ageing organism and demonstrates the dependence of accelerated ageing and age-related pathology on the levels of AKG and SC in studies on different species (roundworm Caenorhabditis elegans, Drosophila, mice, and humans used as models). The findings suggest that this approach may also be useful to show that Krebs cycle metabolites may be involved in age-related abnormalities of the mitochondrial metabolism and may thus induce epigenetic reprogramming that contributes to the senile phenotype and degenerative diseases. The metabolism of these compounds is particularly important when considering ageing mechanisms connected with different levels of initial physiological reactivity and able to initiate individual programmed ageing, depending on the intensity of oxygen consumption, metabolic peculiarities, and behavioural reactions.
Journal Article
Diesel Engine Emission Aftertreatment Device Aging Mechanism and Durability Assessment Methods: A Review
To meet more and more stringent emission standards, the combined technologies must be used to purify the emission pollutants of vehicle exhaust. Among them, the aftertreatment devices, including DOC, SCR, DPF, and so on, are the most efficient methods. However, after long-term running, the performance of the aftertreatment devices will inevitably degrade. There are several mechanisms that can be used to explain the aging phenomena. For the catalytic devices, such as DOC and SCR, thermal aging and poisoning aging are the most important reasons for their performance deterioration. As for DPF, ash clogging is a key problem for its stable working. To develop and test aftertreatment devices better and faster, the accelerated aging methods must be researched and applied. The small-sample aging method enables accelerated aging of catalyst samples at a very low cost, but its aging accuracy may not be good enough. Although the results of the whole-vehicle aging method and bench engine aging method are more in accord with the real using course, they take too much time and are too expensive to be used widely. Burner aging is a promising way to simulate the long-term running of the catalysts.
Journal Article
Analysis of the Mechanical Properties and Damage Mechanism of Carbon Fiber/Epoxy Composites under UV Aging
by
Zhao, Jianping
,
Zou, Chao
,
Shi, Zhongmeng
in
Aging
,
Aging (artificial)
,
Carbon fiber reinforced plastics
2022
The UV durability of carbon fiber composites has been a concern. In this work, UV irradiation on carbon fiber-reinforced polymer (CFRP) materials was performed using an artificial accelerated UV aging chamber to investigate the effect of UV exposure on carbon fiber composites. UV aging caused some of the macromolecular chains on the surface resin to break, resulting in the loss of small molecules and loss of mass. After 80 days of UV irradiation exposure, a significant decline in the macroscopic mechanical properties occurred in the longitudinal direction, with the largest decrease of 23% in longitudinal compressive strength and a decreasing trend in the transverse mechanical properties at the later stage of aging. The microscopic mechanical properties of the CFRP specimens were characterized using nanoindentation, and it was found that UV aging had an embrittlement effect on the matrix, and its hardness/modulus values were higher than the initial values with UV exposure. The fibers were less affected by UV irradiation.
Journal Article
Application of FTIR Spectroscopy in Aging Mechanism Analysis and Material Screening of Automotive Exterior Components
2025
Polymeric materials undergo photo-thermal-oxidative aging, which adversely affects their appearance and functional properties. The aging mechanisms involve complex chemical processes, including molecular chain scission, crosslinking, and oxidation of functional groups. Fourier-transform infrared (FTIR) spectroscopy, capable of precisely detecting changes in characteristic functional groups and chemical bonds, has become a vital tool for investigating polymer aging mechanisms; however, its application in the field of automotive components remains limited. In this study, four representative automotive exterior polymer materials from different manufacturers were subjected to xenon-arc accelerated aging to simulate service conditions. Combined analyses using FTIR spectroscopy, colorimetric measurements, and gloss assessments were systematically employed to elucidate the structural evolution during photo-oxidative aging. The results demonstrated significant redox reactions, alterations in functional groups, and the formation of new species, with molecular structural changes closely correlated to macroscopic performance degradation. This study confirms that FTIR analysis provides an effective approach for revealing aging mechanisms and guiding material selection, thereby offering important insights for weatherability evaluation and material development in automotive components.
Journal Article
A Review on Temperature-Dependent Electrochemical Properties, Aging, and Performance of Lithium-Ion Cells
by
Ziebert, Carlos
,
Kizilel, Riza
,
Alipour, Mohammad
in
aging mechanism
,
battery resistances
,
Chemical reactions
2020
Temperature heavily affects the behavior of any energy storage chemistries. In particular, lithium-ion batteries (LIBs) play a significant role in almost all storage application fields, including Electric Vehicles (EVs). Therefore, a full comprehension of the influence of the temperature on the key cell components and their governing equations is mandatory for the effective integration of LIBs into the application. If the battery is exposed to extreme thermal environments or the desired temperature cannot be maintained, the rates of chemical reactions and/or the mobility of the active species may change drastically. The alteration of properties of LIBs with temperature may create at best a performance problem and at worst a safety problem. Despite the presence of many reports on LIBs in the literature, their industrial realization has still been difficult, as the technologies developed in different labs have not been standardized yet. Thus, the field requires a systematic analysis of the effect of temperature on the critical properties of LIBs. In this paper, we report a comprehensive review of the effect of temperature on the properties of LIBs such as performance, cycle life, and safety. In addition, we focus on the alterations in resistances, energy losses, physicochemical properties, and aging mechanism when the temperature of LIBs are not under control.
Journal Article