Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
355 result(s) for "alpine life zone"
Sort by:
The rich sides of mountain summits – a pan-European view on aspect preferences of alpine plants
Aim In the alpine life zone, plant diversity is strongly determined by local topography and microclimate. We assessed the extent to which aspect and its relatedness to temperature affect plant species diversity, and the colonization and disappearance of species on alpine summits on a pan-European scale. Location Mountain summits in Europe's alpine life zone. Methods Vascular plant species and their percentage cover were recorded in permanent plots in each cardinal direction on 123 summits in 32 regions across Europe. For a subset from 17 regions, resurvey data and 6-year soil temperature series were available. Differences in temperature sum and Shannon index as well as species richness, colonization and disappearance of species among cardinal directions were analysed using linear mixed-effects and generalised mixed-effects models, respectively. Results Temperature sums were higher in east- and south-facing aspects than in the north-facing ones, while the west-facing ones were intermediate; differences were smallest in northern Europe. The patterns of temperature sums among aspects were consistent among years. In temperate regions, thermal differences were reflected by plant diversity, whereas this relationship was weaker or absent on Mediterranean and boreal mountains. Colonization of species was positively related to temperature on Mediterranean and temperate mountains, whereas disappearance of species was not related to temperature. Main conclusions Thermal differences caused by solar radiation determine plant species diversity on temperate mountains. Advantages for plants on eastern slopes may result from the combined effects of a longer diurnal period of radiation due to convection cloud effects in the afternoon and the sheltered position against the prevailing westerly winds. In northern Europe, long summer days and low sun angles can even out differences among aspects. On Mediterranean summits, summer drought may limit species numbers on the warmer slopes. Warmer aspects support a higher number of colonization events. Hence, aspect can be a principal determinant of the pace of climate-induced migration processes.
Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis
Atmospheric nitrogen (N) deposition is a recognized threat to plant diversity in temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems, from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such as direct toxicity of nitrogen gases and aerosols, long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem- and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase, in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition, and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America, especially for the more sensitive ecosystem types, including several ecosystems of high conservation importance. The results of this assessment show that the vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe), and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted studies are required in low background areas, especially in the G200 ecoregions.
Effect of the presence of plateau pikas on the ecosystem services of alpine meadows
The activity of small mammalian herbivores influences grassland ecosystem services in arid and semi-arid regions. Plateau pika (Ochotona curzoniae) was considered to be a focal organism to investigate the effect of small mammalian herbivores on meadow ecosystem services in alpine regions. In this study, a home-range scale was used to measure the forage available to livestock, water conservation, carbon sequestration and soil nutrient maintenance (total nitrogen, phosphorus and potassium) in the topsoil layer, and a quadrat scale was used to assess the biodiversity conservation of alpine meadows. This study showed that the forage available to livestock and water conservation was 19 % and 16 % lower in the presence of plateau pikas than in their absence, and biodiversity conservation, carbon sequestration, soil nitrogen and phosphorus maintenance was 15 %, 29 %, 10 % and 8.9 % higher in the presence of plateau pikas than in their absence. In contrast, it had no impact on soil potassium maintenance of meadow ecosystems in alpine regions. The forage available to livestock, biodiversity conservation and soil nutrient maintenance of meadow ecosystems in alpine regions had maximum values as the disturbance intensity of plateau pikas increased; the water conservation tended to decrease linearly with the increasing disturbance intensity of plateau pikas. These results present a pattern of plateau pikas influencing the ecosystem services of meadow ecosystems in alpine regions, enriching our understanding of the small mammalian herbivores in relation to grassland ecosystem service.
Of goats and heat, the differential impact of summer temperature on habitat selection and activity patterns in mountain goats of different ecotypes
Climate change disproportionately affects northern and alpine environments, with faster rates of warming than the global average. Because alpine and northern species are particularly well adapted to cool temperatures, most species must modify their behavior when temperatures exceed a critical threshold. Evaluating how temperature increases affect species inhabiting northern and alpine environments is therefore essential to understand the effects of projected climate change on these ecosystems. We analyzed the influence of temperature on the activity patterns and habitat selection of four populations of a cold-adapted, mountain specialist, the mountain goat (Oreamnos americanus). We collected GPS location and activity sensor data during 2010–2019 from 223 mountain goats from two distinct ecotypes: coastal and continental. Using a resource selection modeling approach, we determined that mountain goats of both ecotypes decreased selection for alpine meadows when temperatures increased. Reduced selection for open, forage rich habitat was associated with increased selection for habitat dominated by snow/ice patches in coastal areas, and by forests in continental sites. Mountain goats in continental environments selected higher elevation habitats only when temperature increased, whereas goats in coastal environments selected higher elevation habitat at all temperatures. Mountain goats of both ecotypes reduced the proportion of time spent active when temperatures increased during the middle of the day. Our study reveals that mountain goats use diverse tactics to mitigate thermal stress, and that these tactics vary between ecotypes, highlighting the need for considering adaptation to specific environments within a species when assessing climate change impacts on populations.
Shrub growth in the Alps diverges from air temperature since the 1990s
In the European Alps, air temperature has increased almost twice as much as the global average over the last century and, as a corollary, snow cover duration has decreased substantially. In the Arctic, dendroecological studies have evidenced that shrub growth is highly sensitive to temperature—this phenomenon has often been linked to shrub expansion and ecosystem greening. Yet, the impacts of climate change on mountain shrub radial growth have not been studied with a comparable level of detail so far. Moreover, dendroecological studies performed in mountain environments did not account for the potential modulation and/or buffering of global warming impacts by topography, despite its possible crucial role in complex alpine environments. To fill this gap, we analyzed a network of eight sites dominated by the dwarf shrub Rhododendron ferrugineum . The sites selected for analysis represent the diversity of continentality, elevation and slope aspect that can be found across the French Alps. We quantified annual radial increment growth for 119 individuals, assembled meteorological reanalyzes specifically accounting for topographic effects (elevation, slope and aspect) and assessed climate-growth relations using a mixed modeling approach. In agreement with a vast majority of dendroecological work conducted in alpine and arctic environments, we find that the number of growing degree days during the snow-free period snow-free growing degree days (SFGDDs) is a strong and consistent driver of R. ferrugineum growth across all sites since 1960 until the late 1980s. We also document a marked loss of sensitivity of radial growth to increasing SFGDD since the 1990s, with this decoupling being more pronounced at the driest sites. Our observations of the spatial and temporal variability of shrub sensitivity to limiting factors can be compared to the ‘divergence’ problem observed in tree-ring series from circumpolar and alpine regions and, accordingly, sheds light on possible future trajectories of alpine shrub growth in response to ongoing climate change.
Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits
Leaves and fine roots are among the most important and dynamic components of terrestrial ecosystems. To what extent plants synchronize their resource capture strategies above- and belowground remains uncertain. Existing results of trait relationships between leaf and root showed great inconsistency, which may be partly due to the differences in abiotic environmental conditions such as climate and soil. Moreover, there is currently little evidence on whether and how the stringent environments of high-altitude alpine ecosystems alter the coordination between above- and belowground. Here we measured six sets of analogous traits for both leaves and fine roots of 139 species collected from Tibetan alpine grassland and Mongolian temperate grassland. N, P and N:P ratio of leaves and fine roots were positively correlated, independent of biogeographic regions, phylogenetic affiliation or climate. In contrast, leaves and fine roots seem to regulate morphological traits more independently. The specific leaf area (SLA)–specific root length (SRL) correlation shifted from negative at sites under low temperature to positive at warmer sites. The cold climate of alpine regions may impose different constraints on shoots and roots, selecting simultaneously for high SLA leaves for rapid C assimilation during the short growing season, but low SRL roots with high physical robustness to withstand soil freezing. In addition, there might be more community heterogeneity in cold soils, resulting in multidirectional strategies of root in resource acquisition. Thus our results demonstrated that alpine climate alters the relationships between leaf and root morphological but not chemical traits.
Simulated heat waves affected alpine grassland only in combination with drought
The Alpine region is warming fast, and concurrently, the frequency and intensity of climate extremes are increasing. It is currently unclear whether alpine ecosystems are sensitive or resistant to such extremes. We subjected Swiss alpine grassland communities to heat waves with varying intensity by transplanting monoliths to four different elevations (2440–660 m above sea level) for 17 d. Half of these were regularly irrigated while the other half were deprived of irrigation to additionally induce a drought at each site. Heat waves had no significant impacts on fluorescence (Fᵥ/Fₘ, a stress indicator), senescence and aboveground productivity if irrigation was provided. However, when heat waves coincided with drought, the plants showed clear signs of stress, resulting in vegetation browning and reduced phytomass production. This likely resulted from direct drought effects, but also, as measurements of stomatal conductance and canopy temperatures suggest, from increased high‐temperature stress as water scarcity decreased heat mitigation through transpiration. The immediate responses to heat waves (with or without droughts) recorded in these alpine grasslands were similar to those observed in the more extensively studied grasslands from temperate climates. Responses following climate extremes may differ in alpine environments, however, because the short growing season likely constrains recovery.
Precipitation and local adaptation drive spatiotemporal variations of aboveground biomass and species richness in Tibetan alpine grasslands
The Tibetan Plateau contains the highest and largest alpine pasture in the world, which is adapted to the cold and arid climate. It is challenging to understand how the vast alpine grasslands respond to climate change. We aim to test the hypothesis that there is local adaptation in elevational populations of major plant species in Tibetan alpine grasslands, and that the spatiotemporal variations of aboveground biomass (AGB) and species richness (S) can be mainly explained by climate change only when the effect of local adaptation is removed. A 7-year reciprocal transplant experiment was conducted among the distribution center (4950 m), upper (5200 m) and lower (4650 m) limits of alpine Kobresia meadow in central Tibetan Plateau. We observed interannual variations in S and AGB of 5 functional groups and 4 major species, and meteorological factors in each of the three elevations during 2012–2018. Relationships between interannual changes of AGB and climatic factors varied greatly with elevational populations within a species. Elevation of population origin generally had a greater or an equal contribution to interannual variation in AGB of the 4 major species, compared to temperature and precipitation effects. While the effect of local adaptation was removed by calculating differences in AGB and S between elevations of migration and origin, relative changes in AGB and S were mainly explained by precipitation change rather than by temperature change. Our data support the hypothesis, and further provide evidence that the monsoon-adapted alpine grasslands are more sensitive to precipitation change than to warming.
Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?
Background and aims Nitrogen (N) is one of the most important limiting factors influencing plant growth and reproduction in alpine and tundra ecosystems. However, in situ observations of the effects of root traits on N absorption by alpine plant species are still lacking. Methods We investigated the rates of N uptake and the effect of root characteristics in ten common herbaceous alpine plant species using a 15N isotope tracer technique and the root systems of plants growing in a semi-arid steppe environment on the Tibetan Plateau. Our objective was to determine the root traits (root biomass, volume, surface area, average diameter, length, specific root length and specific root area) that make the largest contribution to the total uptake of N (15N–NO3−, 15N–NH4+ or 15N–glycine) by alpine plant species. Results Monocotyledonous species had higher absorption rates for 15N–NH4+, 15N–NO3−, 15N–glycine and total 15N than dicotyledonous species (P < 0.05). The root biomass, volume, surface area and average diameter were negatively correlated with the absoiption capacity for 15N–NH4+, 15N–NO3− and total 15N across the ten alpine plant species. However, the specific root length and the specific root area had significantly positive effects on the uptake of N. Conclusions In contrast with traditional views on the uptake of N, the N uptake rate was not improved by a larger root volume or root surface area for these alpine plant species in a high-altitude ecosystem. Root morphological traits had greater impacts on N absorption than traits related to the root system size in alpine herbaceous plants.
The Predominance of Nongrowing Season Emissions to the Annual Methane Budget of a Semiarid Alpine Meadow on the Northeastern Qinghai-Tibetan Plateau
The terrestrial methane budget varies between different vegetation types and soil conditions and is highly uncertain for alpine grasslands. This work used eddy covariance techniques to continuously measure CH4 flux (NEEm) over a semiarid alpine meadow on the northeastern Qinghai-Tibetan Plateau from January 2017 to August 2019. The diel NEEm averaged 0.14 ± 0.98 nmol CH4 m−2 s−1 (mean ± S.D.), with a rough pattern of daytime release and nocturnal uptake. The 8-day NEEm exhibited a similar sinusoid variation, with a peak of 6.8 mg CH4 m−2 d−1 at the end of April and a minimum of −1.5 mg CH4 m−2 d−1 at the end of August. The maximum release probably coincided with the thawing of frozen soil in the root zone, and the peak uptake may be related to high soil temperature. Monthly CH4 uptake was highest from June to September and consumed 51.7 mg CH4 m−2 from the atmosphere. CH4 production in the other months totaled 647.6 mg CH4 m−2. The semiarid alpine meadow thus acted as a weak net CH4 source, releasing ca 0.6 g CH4 m−2 year−1 to the atmosphere. The boosted regression trees analysis shows that the sensible heat flux (H) is positively related to half-hour NEEm and accounted for 34% of its variability. The piecewise structural equation models reveal that the magnitude of the effects from soil temperature and vapor pressure deficit on 8-day and monthly NEEm were almost equal, but acted in opposite directions. Vegetation growth and soil moisture exerted little direct influence on NEEm variability at half-hour, 8-day, or monthly scales. Our results show that CH4 emissions of the nongrowing season dominate the annual methane budget for this alpine meadow area. Methane consumption during the growing season was significantly constrained by low soil temperature and high soil water content. These findings imply that semiarid alpine meadows may consume more methane during the growing season if soil temperatures increase and soil moisture levels decrease as projected by future warming scenarios, thus constituting a climate change negative feedback.Graphic abstract