Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,592
result(s) for
"amikacin"
Sort by:
Inhaled Amikacin to Prevent Ventilator-Associated Pneumonia
by
Azaïs, Marie-Ange
,
Veinstein, Anne
,
Zucman, Noémie
in
Administration, Inhalation
,
Adult
,
Amikacin
2023
Whether preventive inhaled antibiotics may reduce the incidence of ventilator-associated pneumonia is unclear.
In this investigator-initiated, multicenter, double-blind, randomized, controlled, superiority trial, we assigned critically ill adults who had been undergoing invasive mechanical ventilation for at least 72 hours to receive inhaled amikacin at a dose of 20 mg per kilogram of ideal body weight once daily or to receive placebo for 3 days. The primary outcome was a first episode of ventilator-associated pneumonia during 28 days of follow-up. Safety was assessed.
A total of 850 patients underwent randomization, and 847 were included in the analyses (417 assigned to the amikacin group and 430 to the placebo group). All three daily nebulizations were received by 337 patients (81%) in the amikacin group and 355 patients (83%) in the placebo group. At 28 days, ventilator-associated pneumonia had developed in 62 patients (15%) in the amikacin group and in 95 patients (22%) in the placebo group (difference in restricted mean survival time to ventilator-associated pneumonia, 1.5 days; 95% confidence interval [CI], 0.6 to 2.5; P = 0.004). An infection-related ventilator-associated complication occurred in 74 patients (18%) in the amikacin group and in 111 patients (26%) in the placebo group (hazard ratio, 0.66; 95% CI, 0.50 to 0.89). Trial-related serious adverse effects were seen in 7 patients (1.7%) in the amikacin group and in 4 patients (0.9%) in the placebo group.
Among patients who had undergone mechanical ventilation for at least 3 days, a subsequent 3-day course of inhaled amikacin reduced the burden of ventilator-associated pneumonia during 28 days of follow-up. (Funded by the French Ministry of Health; AMIKINHAL ClinicalTrials.gov number, NCT03149640; EUDRA Clinical Trials number, 2016-001054-17.).
Journal Article
Amikacin Liposome Inhalation Suspension for Treatment-Refractory Lung Disease Caused by Mycobacterium avium Complex (CONVERT). A Prospective, Open-Label, Randomized Study
by
Griffith, David E.
,
Eagle, Gina
,
Marras, Theodore K.
in
Administration, Inhalation
,
Amikacin - administration & dosage
,
Amikacin - therapeutic use
2018
Improved therapeutic options are needed for patients with treatment-refractory nontuberculous mycobacterial lung disease caused by
complex (MAC).
To evaluate the efficacy and safety of daily amikacin liposome inhalation suspension (ALIS) added to standard guideline-based therapy (GBT) in patients with refractory MAC lung disease.
Adults with amikacin-susceptible MAC lung disease and MAC-positive sputum cultures despite at least 6 months of stable GBT were randomly assigned (2:1) to receive ALIS with GBT (ALIS + GBT) or GBT alone. Once-daily ALIS was supplied in single-use vials delivering 590 mg amikacin to the nebulizer. The primary endpoint was culture conversion, defined as three consecutive monthly MAC-negative sputum cultures by Month 6.
Enrolled patients (ALIS + GBT,
= 224; GBT-alone,
= 112) were a mean 64.7 years old and 69.3% female. Most had underlying bronchiectasis (62.5%), chronic obstructive pulmonary disease (14.3%), or both (11.9%). Culture conversion was achieved by 65 of 224 patients (29.0%) with ALIS + GBT and 10 of 112 (8.9%) with GBT alone (odds ratio, 4.22; 95% confidence interval, 2.08-8.57;
< 0.001). Patients in the ALIS + GBT arm versus GBT alone were more likely to achieve conversion (hazard ratio, 3.90; 95% confidence interval, 2.00-7.60). Respiratory adverse events (primarily dysphonia, cough, and dyspnea) were reported in 87.4% of patients receiving ALIS + GBT and 50.0% receiving GBT alone; serious treatment-emergent adverse events occurred in 20.2% and 17.9% of patients, respectively.
Addition of ALIS to GBT for treatment-refractory MAC lung disease achieved significantly greater culture conversion by Month 6 than GBT alone, with comparable rates of serious adverse events. Clinical trial registered with www.clinicaltrials.gov (NCT02344004).
Journal Article
Randomized Trial of Liposomal Amikacin for Inhalation in Nontuberculous Mycobacterial Lung Disease
by
Griffith, David E.
,
Eagle, Gina
,
Flume, Patrick A.
in
Administration, Inhalation
,
Amikacin - administration & dosage
,
Amikacin - therapeutic use
2017
Lengthy, multidrug, toxic, and low-efficacy regimens limit management of pulmonary nontuberculous mycobacterial disease.
In this phase II study, we investigated the efficacy and safety of liposomal amikacin for inhalation (LAI) in treatment-refractory pulmonary nontuberculous mycobacterial (Mycobacterium avium complex [MAC] or Mycobacterium abscessus) disease.
During the double-blind phase, patients were randomly assigned to LAI (590 mg) or placebo once daily added to their multidrug regimen for 84 days. Both groups could receive open-label LAI for 84 additional days. The primary endpoint was change from baseline to Day 84 on a semiquantitative mycobacterial growth scale. Other endpoints included sputum conversion, 6-minute-walk distance, and adverse events.
The modified intention-to-treat population included 89 (LAI = 44; placebo = 45) patients. The average age of the sample was 59 years; 88% were female; 92% were white; and 80 and 59 patients completed study drug dosing during the double-blind and open-label phases, respectively. The primary endpoint was not achieved (P = 0.072); however, a greater proportion of the LAI group demonstrated at least one negative sputum culture (14 [32%] of 44 vs. 4 [9%] of 45; P = 0.006) and improvement in 6-minute-walk test (+20.6 m vs. -25.0 m; P = 0.017) at Day 84. A treatment effect was seen predominantly in patients without cystic fibrosis with MAC and was sustained 1 year after LAI. Most adverse events were respiratory, and in some patients it led to drug discontinuation.
Although the primary endpoint was not reached, LAI added to a multidrug regimen produced improvements in sputum conversion and 6-minute-walk distance versus placebo with limited systemic toxicity in patients with refractory MAC lung disease. Further research in this area is needed. Clinical trial registered with www.clinicaltrials.gov (NCT01315236).
Journal Article
BAY41-6551 achieves bactericidal tracheal aspirate amikacin concentrations in mechanically ventilated patients with Gram-negative pneumonia
by
Chastre, Jean
,
Luyt, Charles-Edouard
,
Corkery, Kevin
in
Aerosols
,
Amikacin
,
Amikacin - administration & dosage
2012
Purpose
To conduct a multicenter, randomized, placebo-controlled, double-blind, phase II study of BAY41-6551 (NCT01004445), an investigational drug–device combination of amikacin, formulated for inhalation, and a proprietary Pulmonary Drug Delivery System, for the treatment of Gram-negative pneumonia in mechanically ventilated patients.
Methods
Sixty-nine mechanically ventilated patients with Gram-negative pneumonia, a clinical pulmonary infection score ≥6, at risk for multidrug-resistant organisms, were randomized to BAY41-6551 400 mg every 12 h (q12h), 400 mg every 24 h (q24h) with aerosol placebo, or placebo q12h for 7–14 days, plus standard intravenous antibiotics. The combined primary endpoint was a tracheal aspirate amikacin maximum concentration ≥6,400 μg/mL (25 × 256 μg/mL reference minimum inhibitory concentration) and a ratio of area under the aspirate concentration–time curve (0–24 h) to minimum inhibitory concentration ≥100 on day 1.
Results
The primary endpoint was achieved in 50% (6/12) and 16.7% (3/18) of patients in the q12h and q24h groups, respectively. Clinical cure rates, in the 48 patients getting ≥7 days of therapy, were 93.8% (15/16), 75.0% (12/16), and 87.5% (14/16) in the q12h, q24h, and placebo groups, respectively (
p
= 0.467). By the end of aerosol therapy, the mean number of antibiotics per patient per day was 0.9 in the q12h, 1.3 in the q24h, and 1.9 in the placebo groups, respectively (
p
= 0.02 for difference between groups). BAY41-6551 was well tolerated and attributed to two adverse events in one patient (mild bronchospasm).
Conclusions
BAY41-6551 400 mg q12h warrants further clinical evaluation.
Journal Article
A Randomized Double-Blind Placebo-Controlled Dose-Escalation Phase 1 Study of Aerosolized Amikacin and Fosfomycin Delivered via the PARI Investigational eFlow® Inline Nebulizer System in Mechanically Ventilated Patients
by
Vallance, Shirley
,
Abuan, Tammy
,
Tservistas, Markus
in
Administration, Inhalation
,
Adult
,
Aerosols
2014
Abstract
Background:
This clinical trial evaluated the pharmacokinetics and safety/tolerability of amikacin/fosfomycin solution using a vibrating plate nebulizer, in mechanically ventilated patients with ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP).
Methods:
Nine adult patients were consented to receive three escalating doses of a combination of 50 mg/mL amikacin and 20 mg/mL fosfomycin; doses were separated by 24±2 hr. On day 3, patients received two blinded, randomized treatments (amikacin/fosfomycin and volume-matched placebo), separated by 2 hr. All treatments were administered with a single-patient, multitreatment nebulizer (Investigational eFlow® Inline Nebulizer System; PARI Pharma GmbH, positioned in the inspiratory limb tubing between the ventilator and the patient. The nebulizer remained in-line until all treatments had been delivered. Concentrations of amikacin and fosfomycin were measured in tracheal aspirate and plasma samples obtained during the 24 hr after each dose.
Results:
Fifteen minutes after dosing with the 300/120 mg amikacin/fosfomycin combination, tracheal aspirate amikacin concentrations±SD were 12,390±3,986 μg/g, and fosfomycin concentrations were 6,174±2,548 μg/g (n=6). Airway clearance was rapid. Plasma concentrations were subtherapeutic; the highest observed amikacin plasma concentration was 1.4 μg/mL, and the highest observed fosfomycin plasma concentration was 0.8 μg/mL. Administration time was approximately 2 min/mL. No adverse effects on respiratory rate, peak airway pressures, or oxygenation were observed during or following drug or placebo administration.
Conclusions:
High tracheal aspirate concentrations of amikacin and fosfomycin were achieved in mechanically ventilated patients with VAT or VAP after aerosolized administration with an inline nebulizer system. Airway clearance was rapid. No adverse respiratory effects were noted during or following drug administration.
Journal Article
Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection
2013
Rationale Arikace is a liposomal amikacin preparation for aerosol delivery with potent Pseudomonas aeruginosa killing and prolonged lung deposition. Objectives To examine the safety and efficacy of 28 days of once-daily Arikace in cystic fibrosis (CF) patients chronically infected with P aeruginosa. Methods 105 subjects were evaluated in double-blind, placebo-controlled studies. Subjects were randomised to once-daily Arikace (70, 140, 280 and 560 mg; n=7, 5, 21 and 36 subjects) or placebo (n=36) for 28 days. Primary outcomes included safety and tolerability. Secondary outcomes included lung function (forced expiratory volume at one second (FEV1)), P aeruginosa density in sputum, and the Cystic Fibrosis Quality of Life Questionnaire—Revised (CFQ-R). Results The adverse event profile was similar among Arikace and placebo subjects. The relative change in FEV1 was higher in the 560 mg dose group at day 28 (p=0.033) and at day 56 (28 days post-treatment, 0.093L±0.203 vs −0.032L±0.119; p=0.003) versus placebo. Sputum P aeruginosa density decreased >1 log in the 560 mg group versus placebo (days 14, 28 and 35; p=0.021). The Respiratory Domain of the CFQ-R increased by the Minimal Clinically Important Difference (MCID) in 67% of Arikace subjects (560 mg) versus 36% of placebo (p=0.006), and correlated with FEV1 improvements at days 14, 28 and 42 (p<0.05). An open-label extension (560 mg Arikace) for 28 days followed by 56 days off over six cycles confirmed durable improvements in lung function and sputum P aeruginosa density (n=49). Conclusions Once-daily Arikace demonstrated acute tolerability, safety, biologic activity and efficacy in patients with CF with P aeruginosa infection.
Journal Article
Amikacin: Uses, Resistance, and Prospects for Inhibition
2017
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(−)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6′-N-acetyltransferase type Ib [AAC(6′)-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6′)-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6′)-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Journal Article
Nebulized Ceftazidime and Amikacin in Ventilator-associated Pneumonia Caused by Pseudomonas aeruginosa
by
Aymard, Guy
,
Liu, Zhihai
,
Lu, Qin
in
Administration, Inhalation
,
Amikacin - administration & dosage
,
Amikacin - pharmacokinetics
2011
In experimental pneumonia, nebulization of antibiotics provides high lung tissue concentrations and rapid bacterial killing.
To assess the efficacy and safety of nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa.
Forty patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa were included in a randomized comparative phase II trial. Twenty patients infected with susceptible or intermediate strains received nebulized ceftazidime (15 mg·kg(-1)·3 h(-1)) and amikacin (25 mg·kg(-1)·d(-1)). Seventeen patients infected with susceptible strains received intravenous ceftazidime (90 mg·kg(-1)·d(-1), continuous administration) and amikacin (15 mg·kg(-1)·d(-1)). In three patients infected with intermediate strains, amikacin was replaced by ciprofloxacin (400 mg·12 h(-1)).
After 8 days of antibiotic administration, aerosol and intravenous groups were similar in terms of successful treatment (70 vs. 55%), treatment failure (15 vs. 30%), and superinfection with other microorganisms (15 vs. 15%). Antibiotic-induced changes in lung aeration, determined by computed tomography, were not different between groups (increase in gas volume, 159 ± 460 vs. 251 ± 583 ml; decrease in tissue volume, -58 [-77, 25] vs. -89 [-139, 5] ml). Acquisition of per-treatment antibiotic resistance was observed exclusively in the intravenous group. In the aerosol group, four patients infected with intermediate strains were successfully treated. Nebulization induced an obstruction of the expiratory filter in three patients. The obstruction caused cardiac arrest in one patient, who fully recovered after brief cardiopulmonary resuscitation.
Nebulization and intravenous infusion of ceftazidime and amikacin provide similar efficiency for treating ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Nebulization is efficient against intermediate strains and may prevent per-treatment acquisition of antibiotic resistance.
Journal Article
Detection of isoniazid, fluoroquinolone, ethionamide, amikacin, kanamycin, and capreomycin resistance by the Xpert MTB/XDR assay: a cross-sectional multicentre diagnostic accuracy study
2022
The WHO End TB Strategy requires drug susceptibility testing and treatment of all people with tuberculosis, but second-line diagnostic testing with line-probe assays needs to be done in experienced laboratories with advanced infrastructure. Fewer than half of people with drug-resistant tuberculosis receive appropriate treatment. We assessed the diagnostic accuracy of the rapid Xpert MTB/XDR automated molecular assay (Cepheid, Sunnyvale, CA, USA) to overcome these limitations.
We did a prospective study involving individuals presenting with pulmonary tuberculosis symptoms and at least one risk factor for drug resistance in four sites in India (New Delhi and Mumbai), Moldova, and South Africa between July 31, 2019, and March 21, 2020. The Xpert MTB/XDR assay was used as a reflex test to detect resistance to isoniazid, fluoroquinolones, ethionamide, amikacin, kanamycin, and capreomycin in adults with positive results for Mycobacterium tuberculosis complex on Xpert MTB/RIF or Ultra (Cepheid). Diagnostic performance was assessed against a composite reference standard of phenotypic drug-susceptibility testing and whole-genome sequencing. This study is registered with ClinicalTrials.gov, number NCT03728725.
Of 710 participants, 611 (86%) had results from both Xpert MTB/XDR and the reference standard for any drug and were included in analysis. Sensitivity for Xpert MTB/XDR detection of resistance was 94% (460 of 488, 95% CI 92–96) for isoniazid, 94% (222 of 235, 90–96%) for fluoroquinolones, 54% (178 of 328, 50–61) for ethionamide, 73% (60 of 82, 62–81) for amikacin, 86% (181 of 210, 81–91) for kanamycin, and 61% (53 of 87, 49–70) for capreomycin. Specificity was 98–100% for all drugs. Performance was equivalent to that of line-probe assays. The non-determinate rate of Xpert MTB/XDR (ie, invalid M tuberculosis complex detection) was 2·96%.
The Xpert MTB/XDR assay showed high diagnostic accuracy and met WHO's minimum target product profile criteria for a next-generation drug susceptibility test. The assay has the potential to diagnose drug-resistant tuberculosis rapidly and accurately and enable optimum treatment.
German Federal Ministry of Education and Research through KfW, Dutch Ministry of Foreign Affairs, and Australian Department of Foreign Affairs and Trade.
Journal Article
The Use of Amikacin Liposome Inhalation Suspension (Arikayce) in the Treatment of Refractory Nontuberculous Mycobacterial Lung Disease in Adults
2020
Nontuberculous mycobacteria (NTM) can cause and perpetuate chronic inflammation and lung infection. Despite having the diagnostic criteria, as defined by the American Thoracic Society (ATS) and Infectious Diseases Society of America (IDSA), clinicians find it challenging to diagnose and treat NTM-induced lung disease. Inhaled antibiotics are suitable for patients with lung infection caused by
and other organisms, but until recently, their utility in NTM-induced infection was not established. The most common NTM pathogens identified are the slow-growing
complex (MAC) and the rapid-growing
complex (MABSC), both of which include several subspecies. Other less commonly isolated species include
, and
. NTM strains are frequently more resistant than what is found in bacterial sputum cultures. Until recently, there was no approved inhaled antibiotic therapy for patients who were culture positive for pulmonary NTM infection. Of late, inhaled amikacin has been under investigation for the treatment of NTM-induced pulmonary infection. The FDA approved Arikayce (amikacin liposome inhalation suspension or ALIS) based on results from the ongoing Phase 3 CONVERT trial. In this study, the use of Arikayce met its primary endpoint of sputum culture conversion by the sixth month of treatment. The addition of Arikayce to guideline-based therapy led to negative sputum cultures for NTM by month 6 in 29% of patients compared to 8.9% of patients treated with guideline-based therapy alone. The effectiveness of Arikayce holds promise. However, due to limited data on Arikayce's safety, it is currently useful only for a specific population, particularly patients with refractory NTM-induced lung disease. Future trials must verify the target group and endorse the clinical benefits of Arikayce.
Journal Article