Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
9,709 result(s) for "analytical modelling"
Sort by:
Contemporaneous Thick- and Thin-Skinned Seismotectonics in the External Zagros: The Case of the 2021 Fin Doublet, Iran
In this work, we propose a geodetic model for the seismic sequence, with doublet earthquakes, that occurred in Bandar Abbas, Iran, in November 2021. A dataset of Sentinel-1 images, processed using the InSAR (Interferometric Synthetic Aperture Radar) technique, was employed to identify the surface deformation caused by the major events of the sequence and to constrain their geometry and kinematics using seismological constraints. A Coulomb stress transfer analysis was also applied to investigate the sequence’s structural evolution in space and time. A linear inversion of the InSAR data provided a non-uniform distribution of slip over the fault planes. We also performed an accurate relocation of foreshocks and aftershocks recorded by locally established seismographs, thereby allowing us to determine the compressional tectonic stress regime affecting the crustal volume. Despite the very short time span of the sequence, our results clearly suggest that distinct blind structures that were previously unknown or only suspected were the causative faults. The first Mw 6.0 earthquake occurred on an NNE-dipping, intermediate-angle, reverse-oblique plane, while the Mw 6.4 earthquake occurred on almost horizontal or very low-angle (SSE-dipping) reverse segments with top-to-the-south kinematics. The former, which cut through and displaced the Pan-African pre-Palaeozoic basement, indicates a thick-skinned tectonic style, while the latter rupture(s), which occurred within the Palaeozoic–Cenozoic sedimentary succession and likely exploited the stratigraphic mechanical discontinuities, clearly depicts a thin-skinned style.
Mining-Induced Seismicity during Development Works in Coalbeds in the Context of Forecasts of Geomechanical Conditions
Mining-induced seismicity in the area of development works and proper mining operations is one of the major determinants of the rockburst hazard level in underground mines. Rockburst hazard assessment in Polish collieries is performed by a variety of mining and geophysical methods, including seismic and seismoacoustic techniques, borehole surveys, small diameter drilling, rock strata profiling and analyses of geomechanical properties of rocks, geological structure and geological mining conditions. In the case of zones particularly exposed to potential hazards, it is recommended that analytical or numerical forecasts of the state of stress in the vicinity of workings should be used already at the stage of planning of mining operations. This study summarises the comparative analysis of seismic test data and analytical forecasts of the state of stress in five selected headings in one of the burst-prone collieries within the Upper Silesia Coal Basin in Poland (USCB). As regards the seismic data, duly defined quantitative indicators and energy criteria of the registered seismic activity are recalled in the assessment of rockburst hazard level during the roadheading operations. Analytical simulations utilise a developed geomechanical model and stress–strain relationships stemming from the principles of elastic media mechanics. From the standpoint of mining engineering practice, interpretation of results obtained by the two methods reveals how effective analytical models will be in prognosticating or verification of rockburst hazard conditions.
Experimental and Analytical Evaluations of Ground Behaviors on Changing in Groundwater Level in Bangkok, Thailand
Groundwater level changes have numerous effects on buildings, such as differential ground deformation and cracking on the wall. In Bangkok, Thailand, change in groundwater levels changing was caused by groundwater pumping that took place from 1978 to 1997. This is the main effect of ground deformation in a wide area of the Bangkok plain. According to the regulation of groundwater pumping in Bangkok and urban areas, the trend of groundwater level tended to recover around the year 1997. However, the ground settlement still occurs for a while after groundwater recovery. The objective of this study is to evaluate and compare the capability of each approach for the ground deformation and the pile capacity in the situation of groundwater level change. Data in this study were obtained from the previous centrifuge test which had been modeled for the Bangkok area. The ground behavior and pile load capacity behavior were verified using numerical modeling. Both experimental modeling and numerical modeling represent very similar trends of ground deformation. The pile capacity results from both models’ increase while the groundwater level decreases and the pile capacity decreases when groundwater is recovered. The numerical modeling results reveal an overestimate of the ground behavior. However, both results present the loss of pile capacity in the range of 8 to 25% of maximum load when the groundwater level reach to the minimum level.
Influence of Rail Track Foundation Parameters on the Nonlinear Dynamic Response of a Railway Track
The dynamic response of railway tracks is a key factor influencing the operational safety and reliability of rail transport. Classical analytical methods for modelling track dynamics become insufficient at higher operating speeds, as they typically assume linear behaviour and cannot account for nonlinearities present in the fastening system or in the rail track foundation response. This increases the risk of damage, leading to traffic interruptions, financial losses, and reduced safety. To support predictive maintenance, it is necessary to develop databases based on in-situ measurements, complemented with synthetic data obtained from validated analytical and semi-analytical models. This paper presents such a model, designed to analyse how the parameters of the track foundation – including stiffness and damping – affect the track’s dynamic response to loads generated by a moving railway vehicle. The model incorporates experimentally confirmed nonlinear stiffness of the fastening system, represented by a viscoelastic layer that provides continuous support for the rails.
Tonal-Noise Assessment of Quadrotor-Type UAV Using Source-Mode Expansions
The present work deals with the modeling of the aerodynamic sound generated by the propellers of small-size drones, taking into account the effects of horizontal forward flight with negative pitch and of installation on supporting struts. Analytical aeroacoustic formulations are used, dedicated to the loading noise. The fluctuating lift forces on the blades are expanded as circular distributions of acoustic dipoles, the radiated field of which is calculated by using the free-space Green’s function. This provides descriptions of the sound field, valid in the entire space. The stationary mean-flow distortions responsible for the lift fluctuations and at the origin of the sound are estimated from existing numerical flow simulations and from ad hoc models. Installation and forward-flight effects are found to generate much more sound than the steady loading on the blades associated with thrust. Therefore, the models are believed reliable fast-running tools that could be used for preliminary low-noise design through repeated parametric calculations, or for noise-impact estimates corresponding to prescribed urban traffic.
Quasi-static analysis of mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting
Selective laser melting (SLM) is a transformative manufacturing process due to its ability to manufacture complex metal parts directly from various bulk powders. With the capability of reducing powder consumption and decreasing fabrication times, lattice structures, which are used as infilling materials within hollow parts, offer an effective solution for decreasing the high costs that currently impede the wider application of SLM in various industries. The assessment of mechanical properties of SLM-built lattice structures, however, remain challenging due to their complicated geometries, while pursuing experimental studies proves to be time-consuming due to the requirement of numerous part fabrication and physical testing. To address these research challenges, this study proposes an analytical modelling approach conducting quasi-static analysis on Ti6Al4V (Ti64) lattice structures. In order to investigate the structures’ mechanical properties, dynamic balance equation of the structures under compression loads were first established, and the stress distribution of the structures was calculated explicitly using central difference method. The modelling approach was validated by conducting uniaxial compression tests on samples fabricated using SLM. The experiments showed that the equivalent elastic modulus ( E* ) and the ultimate stress ( UTS ) values of the Ti64 structures predicted by the analytical method were in good agreement with the experimental results. The paper also discusses the design principles of SLM-built lattice structures (mainly the selection of proper topologies and relative densities) and examines the necessity and flexibility of the proposed analytical approach compared with conventional theoretical methods and their experimental studies in the context of SLM process.
A comprehensive review of deep borehole heat exchangers (DBHEs): subsurface modelling studies and applications
Deep borehole heat exchangers (DBHEs) with depths exceeding 500 m have been researched comprehensively in the literature, focusing on both applications and subsurface modelling. This review focuses on conventional (vertical) DBHEs and provides a critical literature survey to analyse (i) methodologies for modelling; (ii) results from heat extraction modelling; (iii) results from modelling deep borehole thermal energy storage; (iv) results from heating and cooling models; and (v) real case studies. Numerical models generally compare well to analytical models whilst maintaining more flexibility, but often with increased computational resources. Whilst in-situ geological parameters cannot be readily modified without resorting to well stimulation techniques (e.g. hydraulic or chemical stimulation), engineering system parameters (such as mass flow rate of the heat transfer fluid) can be optimised to increase thermal yield and overall system performance, and minimise pressure drops. In this active research area, gaps remain, such as limited detailed studies into the effects of geological heterogeneity on heat extraction. Other less studied areas include: DBHE arrays, boundary conditions and modes of operation. A small number of studies have been conducted to investigate the potential for deep borehole thermal energy storage (BTES) and an overview of storage efficiency metrics is provided herein to bring consistency to the reporting of thermal energy storage performance of such systems. The modifications required to accommodate cooling loads are also presented. Finally, the active field of DBHE research is generating a growing number of case studies, particularly in areas with low-cost drilling supply chains or abandoned hydrocarbon or geothermal wells suitable for repurposing. Existing and planned projects are thus presented for conventional (vertical) DBHEs. Despite growing interest in this area of research, further work is needed to explore DBHE systems for cooling and thermal energy storage.
Evaluation of the Properties of Eddy Current Sensors Based on Their Equivalent Parameters
This paper presents a practical way of using the method of evaluating the metrological properties of eddy current sensors. The idea of the proposed approach consists of employing a mathematical model of an ideal filamentary coil to determine equivalent parameters of the sensor and sensitivity coefficients of tested physical quantities. These parameters were determined on the basis of the measured value of the real sensor’s impedance. The measurements were carried out with an air-core sensor and an I-core sensor while they were positioned at different distances from the surface of tested copper and bronze plates. An analysis of the influence of the coil’s position in relation to the I core on the equivalent parameters was also carried out, and the interpretation of the results obtained for various sensor configurations was presented in a graphical form. When equivalent parameters and sensitivity coefficients of examined physical quantities are known, it is possible to compare even very different sensors with the employment of one measure. The proposed approach makes it possible to make a significant simplification of the mechanisms of calibration of conductometers and defectoscopes, computer simulation of eddy current tests, creating the scale of a measuring device, and designing sensors.
In-plane crushing behaviour of hierarchical honeycombs: finite element simulation and analytical modelling
This work reports on the in-plane crushing behaviour of second-order hierarchical honeycombs with triangle substructures (SHT). Here, cell walls of a conventional hexagonal honeycomb were replaced with two-layer equilateral triangles as substructures. Finite element (FE) simulations and analytical modelling were conducted, and a good agreement was found between FE and analytical results. The response of SHT was compared with that of other patterned honeycombs. Three deformation modes were observed under different loading speeds, and critical velocities for mode transforming were obtained qualitatively. The effect of loading speed and relative density on crushing stress and energy absorption capacity was also discussed.
The Effect of Mining Remnants on Elastic Strain Energy Arising in the Tremor-Inducing Layer
A vast majority of hard coal deposits in Poland have a multi-seam structure, hence the presence of mining remnants left from previous operations. The impact of those remnants (exploitation edges or residual pillars) can further intensify geomechanical phenomena occurring in the rock mass, leading to changes in the original state of stress. This applies to all layers within the rock strata, including thick and coherent ones (referred to as tremor-inducing layers) where the impacts of mining remnants are likely to trigger tremors, thus enhancing the rock bursts hazard. In the light of the geomechanical model of rock strata recalled in the study, it is assumed that homogeneous and isotropic elastic layers are found between the considered mining remnant (which is revealed as the stress distribution), and the rock medium modelled as a homogeneous and isotropic half-plane. Development of the state of stress in the bedded medium was brought down to the analysis of interacting elastic layers, where the biharmonic equation is satisfied for each layer and for each respective half-plane. This equation can be solved by the integral Fourrier transform method. The impacts of the exploitation edge and the residual pillar on the elastic strain energy in the tremor-inducing layer is illustrated by recalling the Burzyński’s stress criterion. Strain energy in the tremor-inducing layer was analysed for various deformation properties of the surrounding strata and for various methods of coal extraction from the seam underneath the tremor-inducing layer. The results of the study evidence that a change in deformation properties of strata in the vicinity of the tremor-inducing layer may affect the state of stress and strain energy, which impacts on the tremor hazard levels in the vicinity of mining remnants areas.