Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,955 result(s) for "animal lives"
Sort by:
Contribution of the Live-Vertebrate Trade toward Taxonomic Homogenization
The process of taxonomic homogenization occurs through two mechanisms, extinctions and introductions, and leads to a reduction of global biodiversity. We used available U.S. trade data as a proxy for global trade in live vertebrates to assess the contribution of trade to the process of taxonomic homogenization. Data included all available U.S. importation and exportation records, estimation of extinction risk, and reports of establishment outside the native range for species within six vertebrate groups. Based on Monte Carlo sampling, the number of species traded, established outside of the native range, and threatened with extinction was not randomly distributed among vertebrate families. Twenty-eight percent of vertebrate families that were traded preferentially were also established or threatened with extinction, an unusually high percentage compared with the 7% of families that were not traded preferentially but that became established or threatened with extinction. The importance of trade in homogenization of vertebrates suggests that additional efforts should be made to prevent introductions and extinctions through this medium.
Travellers give wings to novel coronavirus (2019-nCoV)
A novel coronavirus, probably of bat origin, has caused an outbreak of severe respiratory infection in humans in Wuhan, China and has been dispersed globally by travelers. The WHO has declared the spread of the infection a Public Health Emergency of International Concern.
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations.
Enhanced single RNA imaging reveals dynamic gene expression in live animals
Imaging endogenous mRNAs in live animals is technically challenging. Here, we describe an MS2-based signal amplification with the Suntag system that enables live-cell RNA imaging of high temporal resolution and with 8xMS2 stem-loops, which overcomes the obstacle of inserting a 1300 nt 24xMS2 into the genome for the imaging of endogenous mRNAs. Using this tool, we were able to image the activation of gene expression and the dynamics of endogenous mRNAs in the epidermis of live C. elegans .
Environmental DNA ‐based detection of pathogens in trade and captive settings: Best practices and validation for Batrachochytrium salamandrivorans
Detecting pathogens in the live animal trade is critical for tracking and preventing their movement, introduction and spillover into susceptible fauna. However, the scale of the live animal trade makes individually testing animals infeasible for all but the most economically important taxa. For instance, while the fungal pathogen, Batrachochytrium salamandrivorans ( Bsal ), threatens amphibian, particularly caudate diversity, in Europe and the Americas, screening even a fraction of the millions of live amphibians imported into the United States, alone, is impractically laborious and expensive. A promising alternative to individual‐level sampling (e.g. swabbing the skin of salamanders) is to instead collect DNA from the animals' environment (e.g. housing container or water) which allows us to screen a whole group of animals at a time. We used a series of experiments with Bsal ‐spiked water and substrates and experimentally infected rough‐skinned newts ( Taricha granulosa ) to determine which methods yield the most Bsal environmental DNA (eDNA) and evaluate the capacity of these methods to detect Bsal ‐infected animals in conditions found in captive settings and trade. We found that filtering water housing infected animals for even an hour can consistently recover detectable levels of Bsal eDNA, that there is little evidence of Bsal eDNA being clumped in housing containers or swamped or inhibited by dirty housing containers, and that eDNA‐based methods achieves an equivalent or higher chance of detecting Bsal infections in a (virtual) population of co‐housed newts with fewer samples than individual swabs. By sampling the genetic materials accumulated from a whole group of animals, eDNA‐based methods are a powerful means of detecting pathogens, such as Bsal , in shipments and captive populations. These methods bring routine pathogen surveillance into reach in many more contexts and can thus be an important tool in conservation and disease control.
Tumor-Localized Administration of α-GalCer to Recruit Invariant Natural Killer T Cells and Enhance Their Antitumor Activity against Solid Tumors
Invariant natural killer T (iNKT) cells have the capacity to mount potent anti-tumor reactivity and have therefore become a focus in the development of cell-based immunotherapy. iNKT cells attack tumor cells using multiple mechanisms with a high efficacy; however, their clinical application has been limited because of their low numbers in cancer patients and difficulties in infiltrating solid tumors. In this study, we aimed to overcome these critical limitations by using α-GalCer, a synthetic glycolipid ligand specifically activating iNKT cells, to recruit iNKT to solid tumors. By adoptively transferring human iNKT cells into tumor-bearing humanized NSG mice and administering a single dose of tumor-localized α-GalCer, we demonstrated the rapid recruitment of human iNKT cells into solid tumors in as little as one day and a significantly enhanced tumor killing ability. Using firefly luciferase-labeled iNKT cells, we monitored the tissue biodistribution and pharmacokinetics/pharmacodynamics (PK/PD) of human iNKT cells in tumor-bearing NSG mice. Collectively, these preclinical studies demonstrate the promise of an αGC-driven iNKT cell-based immunotherapy to target solid tumors with higher efficacy and precision.
A Minimally Invasive Framework Reveals Region‐Specific Cerebrovascular Remodeling in Aging Using Intravital Functional Ultrasound Imaging and Ultrasound Localization Microscopy (fUS‐ULM)
Aging impairs cerebrovascular structure and function, contributing to cognitive decline and dementia. Here, a novel, high‐resolution, intravital imaging platform is presented that combines functional ultrasound (fUS) and ultrasound localization microscopy (ULM) through a chronically implanted, polymethylpentene (TPX) cranial window, a transparent implant that enables ultrasound imaging through the skull. This approach enables intravital, longitudinal, minimally invasive assessment of cerebrovascular structure and function across cortical and deep brain regions. Leveraging this platform, a new method is developed to estimate resting cerebral blood flow (CBF) by integrating microbubble (MB) velocity data from fUS with microvascular geometry derived from ULM. Notably, a significant age‐related decline in the cortical arteriole‐to‐venule ratio (AVR) is discovered, introducing a novel biomarker of structural cerebrovascular remodeling. It is also validated that fUS can reliably assess neurovascular coupling (NVC) responses in aged mice. This study establishes a powerful, non‐invasive, and repeatable investigative tool for future preclinical studies aimed at evaluating the efficacy of therapeutic interventions targeting vascular contributions to cognitive impairment and neurodegeneration.
Mobile Zoos and Other Itinerant Animal Handling Events: Current Status and Recommendations for Future Policies
Mobile zoos are events in which non-domesticated (exotic) and domesticated species are transported to venues such as schools, hospitals, parties, and community centres, for the purposes of education, entertainment, or social and therapeutic assistance. We conducted literature searches and surveyed related government agencies regarding existing provisions within laws and policies, number of mobile zoos, and formal guidance issued concerning operation of such events in 74 countries or regions. We also examined governmental and non-governmental guidance standards for mobile zoos, as well as websites for mobile zoo operations, assessed promotional or educational materials for scientific accuracy, and recorded the diversity of species in use. We used the EMODE (Easy, Moderate, Difficult, or Extreme) algorithm, to evaluate identified species associated with mobile zoos for their suitability for keeping. We recorded 14 areas of concern regarding animal biology and public health and safety, and 8 areas of false and misleading content in promotional or educational materials. We identified at least 341 species used for mobile zoos. Mobile zoos are largely unregulated, unmonitored, and uncontrolled, and appear to be increasing. Issues regarding poor animal welfare, public health and safety, and education raise several serious concerns. Using the precautionary principle when empirical evidence was not available, we advise that exotic species should not be used for mobile zoos and similar itinerant events.
Prediction of ossification from live and carcass traits in young beef cattle: model development and evaluation
Physiological maturity, measured as carcass ossification [10 unit increments (100, 110, 120, …)], is used by the United States Department of Agriculture and the Meat Standards Australia carcass grading systems to reflect age-associated differences in beef tenderness and determine producer payments. In most commercial cattle herds, the exact age of animals is unknown; thus, prediction of ossification in association with phenotypic prediction systems has the capacity to assist producer decision making to improve carcass and eating quality. This study developed and evaluated prediction equations that use either live animal or carcass traits to predict ossification for use in phenotypic prediction systems to predict meat quality. The average ossification in the model development dataset was 138 with a SD of 21 and a range between 100 and 200. Model development involved regressing various combinations of live animal traits: age at recording, sex, live weight (BW), average daily gain, ultrasound scanned eye muscle area, 12/13th rib and subcutaneous P8 rump fat thickness; or carcass traits: age at slaughter, sex, hot standard carcass weight (HSCW), carcass eye muscle area, marble score, rib, and P8 rump fat (CP8) thickness, against ossification. The models were challenged with data from 3 independent datasets: 1) Angus steers produced by divergent selection for visual muscle score; 2) temperate (Angus, Hereford, Shorthorn and Murray Grey) steers and heifers; and 3) tropically adapted (Brahman and Santa Gertrudis) steers and heifers. Five models with adjusted R2adj above 0.55 were evaluated. When challenged with dataset 1, the absolute mean bias (MB) and root mean square error of prediction (RMSEP) ranged from 0.1 to 4.2, and 9.8 to 10.7, which are within the bounds of the 10 point increment on the ossification scale. When subsequently challenged with dataset 2, MB and RMSEP ranged from 2.8 to 13.4, and 19.6 to 23.7, respectively; and with dataset 3, MB and RMSEP ranged from 14.4 to 17.5, and 23.3 to 31.9, respectively. Generally, when compared in relation to the ossification scale, all evaluated models had similar accuracy. For predicting meat quality, the model containing live animal traits considered most useful was [85.35 + 0.16 × BW + 10.94 × sex - 0.09 × sex × BW (adjusted R2 = 0.59; SE = 13.51)] and the most useful model containing carcass traits was [107.15 + 11.53 × sex + 1.10 × CP8 + 0.16 × HSCW - 0.15 × sex × HSCW (adjusted R2 = 0.60; SE = 13.39)].
The Effect of Behind-The-Scenes Encounters and Interactive Presentations on the Welfare of Captive Servals (Leptailurus serval)
The serval (Leptailurus serval) is a small African felid that is well represented in zoos and often serves as an animal ambassador in encounter programs with zoo visitors. The impact on serval welfare in relation to such programs has not been investigated to date, and the aim of this study was to assess short-term welfare effects of varying levels of visitor interaction in two captive servals. Weekly blocks of four different treatments were imposed three times on each animal over 12 weeks, and the treatments involved (1) Presentations (serval undertaking a routine training session in a designated presentation space, typically attracting high visitor numbers), (2) Behind-the-scenes (BTS, a close encounter allowing a small group of visitors to interact closely with the cat in its enclosure), (3) Presentations and BTS combined, and (4) No visitor interaction. Serval activity budgets as well as behavioural diversity were created from behaviours observed from Close Circuit Television (CCTV) footage during four daily recording sessions per animal over three consecutive days per treatment, using instantaneous scan sampling every 60 s. Individual faecal samples were collected daily to monitor changes in faecal glucocorticoid metabolite (FGM) concentration. Results indicate that the mean number of scans with stereotypic pacing was significantly reduced (p = 0.01) during Treatments 1 and 3, when cats participated in presentations only, or the two activities combined. Conversely, a significant reduction in behavioural diversity (p < 0.001) was observed when cats participated in Treatment 3, i.e., cats expressed fewer behaviours when interaction with visitors was more frequent. FGM concentrations did not vary significantly with treatment (p > 0.05). Given the reduction in stereotypic pacing, these findings suggest that involvement in an encounter program appears to exert an overall positive short-term welfare effect on the individual servals in this study. Although a reduction in behavioural diversity was not considered a negative welfare effect in the short term, potential long-term negative welfare effects resulting from a more frequent encounter program could not be ruled out in the present study.