Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
6,180
result(s) for
"anomaly detection"
Sort by:
Graph based anomaly detection and description: a survey
by
Koutra, Danai
,
Akoglu, Leman
,
Tong, Hanghang
in
Algorithms
,
Anomalies
,
Artificial Intelligence
2015
Detecting anomalies in data is a vital task, with numerous high-impact applications in areas such as security, finance, health care, and law enforcement. While numerous techniques have been developed in past years for spotting outliers and anomalies in unstructured collections of multi-dimensional points, with graph data becoming ubiquitous, techniques for structured
graph
data have been of focus recently. As objects in graphs have long-range correlations, a suite of novel technology has been developed for anomaly detection in graph data. This survey aims to provide a general, comprehensive, and structured overview of the state-of-the-art methods for anomaly detection in data represented as graphs. As a key contribution, we give a general framework for the algorithms categorized under various settings: unsupervised versus (semi-)supervised approaches, for static versus dynamic graphs, for attributed versus plain graphs. We highlight the effectiveness, scalability, generality, and robustness aspects of the methods. What is more, we stress the importance of anomaly
attribution
and highlight the major techniques that facilitate digging out the root cause, or the ‘why’, of the detected anomalies for further analysis and sense-making. Finally, we present several real-world applications of graph-based anomaly detection in diverse domains, including financial, auction, computer traffic, and social networks. We conclude our survey with a discussion on open theoretical and practical challenges in the field.
Journal Article
A comprehensive survey on network anomaly detection
by
Al-Muhtadi, Jalal F
,
Fernandes, Gilberto
,
Carvalho, Luiz Fernando
in
Anomalies
,
Communications traffic
,
Cybersecurity
2019
Nowadays, there is a huge and growing concern about security in information and communication technology among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. In this study, the main objective is to review the most important aspects pertaining to anomaly detection, covering an overview of a background analysis as well as a core study on the most relevant techniques, methods, and systems within the area. Therefore, in order to ease the understanding of this survey’s structure, the anomaly detection domain was reviewed under five dimensions: (1) network traffic anomalies, (2) network data types, (3) intrusion detection systems categories, (4) detection methods and systems, and (5) open issues. The paper concludes with an open issues summary discussing presently unsolved problems, and final remarks.
Journal Article
One-class graph neural networks for anomaly detection in attributed networks
2021
Nowadays, graph-structured data are increasingly used to model complex systems. Meanwhile, detecting anomalies from graph has become a vital research problem of pressing societal concerns. Anomaly detection is an unsupervised learning task of identifying rare data that differ from the majority. As one of the dominant anomaly detection algorithms, one-class support vector machine has been widely used to detect outliers. However, those traditional anomaly detection methods lost their effectiveness in graph data. Since traditional anomaly detection methods are stable, robust and easy to use, it is vitally important to generalize them to graph data. In this work, we propose one-class graph neural network (OCGNN), a one-class classification framework for graph anomaly detection. OCGNN is designed to combine the powerful representation ability of graph neural networks along with the classical one-class objective. Compared with other baselines, OCGNN achieves significant improvements in extensive experiments.
Journal Article
Multiclass sentiment analysis on COVID-19-related tweets using deep learning models
by
Vernikou, Sotiria
,
Lyras, Athanasios
,
Kanavos, Andreas
in
Artificial Intelligence
,
Biomedical
,
Computational Biology/Bioinformatics
2022
COVID-19 is an infectious disease with its first recorded cases identified in late 2019, while in March of 2020 it was declared as a pandemic. The outbreak of the disease has led to a sharp increase in posts and comments from social media users, with a plethora of sentiments being found therein. This paper addresses the subject of sentiment analysis, focusing on the classification of users’ sentiment from posts related to COVID-19 that originate from Twitter. The period examined is from March until mid-April of 2020, when the pandemic had thus far affected the whole world. The data is processed and linguistically analyzed with the use of several natural language processing techniques. Sentiment analysis is implemented by utilizing seven different deep learning models based on LSTM neural networks, and a comparison with traditional machine learning classifiers is made. The models are trained in order to distinguish the tweets between three classes, namely negative, neutral and positive.
Journal Article
Explainable contextual anomaly detection using quantile regression forests
2023
Traditional anomaly detection methods aim to identify objects that deviate from most other objects by treating all features equally. In contrast, contextual anomaly detection methods aim to detect objects that deviate from other objects within a context of similar objects by dividing the features into contextual features and behavioral features. In this paper, we develop connections between dependency-based traditional anomaly detection methods and contextual anomaly detection methods. Based on resulting insights, we propose a novel approach to inherently interpretable contextual anomaly detection that uses Quantile Regression Forests to model dependencies between features. Extensive experiments on various synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art anomaly detection methods in identifying contextual anomalies in terms of accuracy and interpretability.
Journal Article
Machine learning for groundwater pollution source identification and monitoring network optimization
by
Perifanos, Konstantinos
,
Kontos, Yiannis N.
,
Katsifarakis, Konstantinos L.
in
Algorithms
,
Aquifers
,
Artificial Intelligence
2022
The identification of the source in groundwater pollution is the only way to drastically deal with resulting environmental problems. This can only be achieved by an appropriate monitoring network, the optimization of which is prerequisite for the solution of the inverse modeling problem, i.e., identifying the source of the pollutant on the basis of measurements taken within the pollution field. For this reason, a theoretical confined aquifer with two pumping wells and six suspected sources is studied. Simulations of combinations of possible source locations, and hydraulic parameters, produce sets of measurement features for a 29 × 29 grid representing potential monitoring wells. Three sets of simulations are conducted to produce synthetic datasets, representing different groundwater pollution modeling methods. Features (input-
X
variables) coupled with respective sources (output-
Y
variables) are formulated in two different dataset formats (Types A, B) in order to train classification (random forests, multilayer perceptron) and computer vision (convolutional neural networks) algorithms, respectively, to solve the inverse modeling problem. In addition, appropriate feature selection and trial-and-error tests are employed for supporting the optimization of monitoring wells’ number, locations and sampling frequency. The methodology can successfully produce various sub-optimal monitoring strategies for various budgets.
Journal Article
Deep autoencoders for acoustic anomaly detection: experiments with working machine and in-vehicle audio
by
Pereira, Pedro José
,
Pilastri, André
,
Cortez, Paulo
in
Acoustics
,
Anomalies
,
Artificial Intelligence
2022
The growing usage of digital microphones has generated an increased interest in the topic of Acoustic Anomaly Detection (AAD). Indeed, there are several real-world AAD application domains, including working machines and in-vehicle intelligence (the main target of this research project). This paper introduces three deep AutoEncoders (AE) for unsupervised AAD tasks, namely a Dense AE, a Convolutional Neural Network (CNN) AE and Long Short-Term Memory Autoencoder (LSTM) AE. To tune the deep learning architectures, development data were adopted from public domain audio datasets related with working machines. A large set of computational experiments was held, showing that the three proposed deep autoencoders, when combined with a melspectrogram sound preprocessing, are quite competitive and outperform a recently proposed AE baseline. Next, on a second experimental stage, aiming to address the final in-vehicle passenger safety goal, the three AEs were adapted to learn from in-vehicle normal audio, assuming three realistic scenarios that were generated by a synthetic audio mixture tool. In general, a high quality AAD discrimination was obtained: working machine data – 72% to 91%; and in-vehicle audio – 78% to 81%. In conjunction with an automotive company, an in-vehicle AAD intelligent system prototype was further developed, aiming to test a selected model (LSTM AE) during a pilot demonstration event that targeted the cough anomaly. Interesting results were obtained, with the AAD system presenting a high cough classification accuracy (e.g., 100% for front seat locations).
Journal Article
Network Traffic Anomaly Detection via Deep Learning
by
Tsekeridou, Sofia
,
Velivassaki, Terpsichori-Helen
,
Zahariadis, Theodore
in
Anomalies
,
Artificial intelligence
,
Artificial neural networks
2021
Network intrusion detection is a key pillar towards the sustainability and normal operation of information systems. Complex threat patterns and malicious actors are able to cause severe damages to cyber-systems. In this work, we propose novel Deep Learning formulations for detecting threats and alerts on network logs that were acquired by pfSense, an open-source software that acts as firewall on FreeBSD operating system. pfSense integrates several powerful security services such as firewall, URL filtering, and virtual private networking among others. The main goal of this study is to analyse the logs that were acquired by a local installation of pfSense software, in order to provide a powerful and efficient solution that controls traffic flow based on patterns that are automatically learnt via the proposed, challenging DL architectures. For this purpose, we exploit the Convolutional Neural Networks (CNNs), and the Long Short Term Memory Networks (LSTMs) in order to construct robust multi-class classifiers, able to assign each new network log instance that reaches our system into its corresponding category. The performance of our scheme is evaluated by conducting several quantitative experiments, and by comparing to state-of-the-art formulations.
Journal Article
DOC-IDS: A Deep Learning-Based Method for Feature Extraction and Anomaly Detection in Network Traffic
by
Hiroki Kuzuno
,
Naoto Yoshimura
,
Yoshiaki Shiraishi
in
Algorithms
,
anomaly detection
,
autoencoder
2022
With the growing diversity of cyberattacks in recent years, anomaly-based intrusion detection systems that can detect unknown attacks have attracted significant attention. Furthermore, a wide range of studies on anomaly detection using machine learning and deep learning methods have been conducted. However, many machine learning and deep learning-based methods require significant effort to design the detection feature values, extract the feature values from network packets, and acquire the labeled data used for model training. To solve the aforementioned problems, this paper proposes a new model called DOC-IDS, which is an intrusion detection system based on Perera’s deep one-class classification. The DOC-IDS, which comprises a pair of one-dimensional convolutional neural networks and an autoencoder, uses three different loss functions for training. Although, in general, only regular traffic from the computer network subject to detection is used for anomaly detection training, the DOC-IDS also uses multi-class labeled traffic from open datasets for feature extraction. Therefore, by streamlining the classification task on multi-class labeled traffic, we can obtain a feature representation with highly enhanced data discrimination abilities. Simultaneously, we perform variance minimization in the feature space, even on regular traffic, to further improve the model’s ability to discriminate between normal and abnormal traffic. The DOC-IDS is a single deep learning model that can automatically perform feature extraction and anomaly detection. This paper also reports experiments for evaluating the anomaly detection performance of the DOC-IDS. The results suggest that the DOC-IDS offers higher anomaly detection performance while reducing the load resulting from the design and extraction of feature values.
Journal Article