Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
49,647
result(s) for
"antibodies, neoplasm"
Sort by:
Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA
by
Lepore, Marco
,
Crean, Rory M.
,
Jeyanthan, Anitha
in
Affinity
,
Amino Acid Sequence
,
Amino acids
2020
Tumor-associated peptide-human leukocyte antigen complexes (pHLAs) represent the largest pool of cell surface-expressed cancer-specific epitopes, making them attractive targets for cancer therapies. Soluble bispecific molecules that incorporate an anti-CD3 effector function are being developed to redirect T cells against these targets using 2 different approaches. The first achieves pHLA recognition via affinity-enhanced versions of natural TCRs (e.g., immune-mobilizing monoclonal T cell receptors against cancer [ImmTAC] molecules), whereas the second harnesses an antibody-based format (TCR-mimic antibodies). For both classes of reagent, target specificity is vital, considering the vast universe of potential pHLA molecules that can be presented on healthy cells. Here, we made use of structural, biochemical, and computational approaches to investigate the molecular rules underpinning the reactivity patterns of pHLA-targeting bispecifics. We demonstrate that affinity-enhanced TCRs engage pHLA using a comparatively broad and balanced energetic footprint, with interactions distributed over several HLA and peptide side chains. As ImmTAC molecules, these TCRs also retained a greater degree of pHLA selectivity, with less off-target activity in cellular assays. Conversely, TCR-mimic antibodies tended to exhibit binding modes focused more toward hot spots on the HLA surface and exhibited a greater degree of crossreactivity. Our findings extend our understanding of the basic principles that underpin pHLA selectivity and exemplify a number of molecular approaches that can be used to probe the specificity of pHLA-targeting molecules, aiding the development of future reagents.
Journal Article
CHI3L1 regulates PD-L1 and anti–CHI3L1–PD-1 antibody elicits synergistic antitumor responses
by
Akosman, Bedia
,
Ma, Bing
,
Elias, Jack A.
in
Animals
,
Antibodies
,
Antibodies, Bispecific - immunology
2021
Evasion of the immune response is a hallmark of cancer, and programmed cell death 1 (PD-1) and PD-1 ligand 1 (PD-L1) are major mediators of this immunosuppression. Chitinase 3-like 1 (CHI3L1) is induced in many cancers, where it portends a poor prognosis and contributes to tumor metastasis and spread. However, the mechanism(s) that CHI3L1 uses in metastasis have not been defined. Here we demonstrate that CHI3L1 regulates the expression of PD-L1, PD-L2, PD-1, LAG3, and TIM3 and plays a critical role in melanoma progression and lymphatic spread. CHI3L1 also contributed to IFN-γ-stimulated macrophage PD-L1 expression, and RIG-like helicase innate immunity suppressed CHI3L1, PD-L1, and melanoma progression. Individual antibodies against CHI3L1 or PD-1 had discrete antitumor effects and additive antitumor responses in metastasis models and T cell-tumor cell cocultures when administered simultaneously. Synergistic cytotoxic tumor cell death was seen in T cell-tumor cell cocultures, and significantly enhanced antitumor responses were seen in in vivo tumor models treated with bispecific antibodies that simultaneously target CHI3L1 and PD-1. CHI3L1 contributes to tumor progression by stimulating the PD-1/PD-L1 axis and other checkpoint molecules. The simultaneous targeting of CHI3L1 and the PD-1/PD-L1 axis with individual and, more powerfully, with bispecific antibodies represents a promising therapy for pulmonary metastasis and progression.
Journal Article
Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth
2017
The inactivation of DNA mismatch repair in cancer cells produces dynamic mutational profiles and generates neoantigens, which result in improved immune surveillance against these cells.
Tumours impaired by DNA disrepair
Inactivation of DNA repair is a common oncogenic process, which increases mutational load in tumours and promotes growth. The authors show that, consistent with the notion that increased mutational load can enhance the immunogenicity of tumours, inactivation of a form of DNA repair called mismatch repair (MMR) can increase the number of neoantigens in tumours. In mice, an increase in neoantigens from MMR inactivation triggered an increase in immune surveillance. MMR inactivation can happen after some forms of chemotherapy, or can potentially be induced, which opens up the possibility of enhancing the effect of immunotherapy by increasing the genetic instability of tumours.
Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression
1
. Cancers deficient in MMR frequently show favourable prognosis and indolent progression
2
. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts
in vitro
and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens
in vitro
and
in vivo
, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.
Journal Article
A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer
by
Fletcher, Laura
,
Maniati, Eleni
,
Berlato, Chiara
in
Animals
,
Antagonists (Biochemistry)
,
Antibodies, Neoplasm
2017
Elevated expression of the chemokine receptor CCR4 in tumors is associated with poor prognosis in several cancers. Here, we have determined that CCR4 was highly expressed in human renal cell carcinoma (RCC) biopsies and observed abnormal levels of CCR4 ligands in RCC patient plasma. An antagonistic anti-CCR4 antibody had antitumor activity in the RENCA mouse model of RCC. CCR4 inhibition did not reduce the proportion of infiltrating leukocytes in the tumor microenvironment but altered the phenotype of myeloid cells, increased NK cell and Th1 cytokine levels, and reduced immature myeloid cell infiltrate and blood chemokine levels. In spite of prominent changes in the myeloid compartment, the anti-CCR4 antibody did not affect RENCA tumors in T cell-deficient mice, and treatment with an anti-class II MHC antibody abrogated its antitumor activity. We concluded that the effects of the anti-CCR4 antibody required the adaptive immune system and CD4+ T cells. Moreover, CCL17-induced IFN-γ production was reduced when Th1-polarized normal CD4+ T cells were exposed to the CCR4 ligand, evidencing the involvement of CCR4 in Th1/Th2 regulation. The anti-CCR4 antibody, alone or in combination with other immune modulators, is a potential treatment approach to human solid cancers with high levels of CCR4-expressing tumor-infiltrating leukocytes and abnormal plasma CCR4 ligand levels.
Journal Article
The fully synthetic glycopeptide MAG-Tn3 therapeutic vaccine induces tumor-specific cytotoxic antibodies in breast cancer patients
2020
Cancer is one of the main causes of mortality worldwide and a major public health concern. Among various strategies, therapeutic vaccines have been developed to stimulate anti-tumoral immune responses. However, in spite of extensive studies, this approach suffers from a lack of efficacy. Recently, we designed the MAG-Tn3 vaccine, aiming to induce antibody responses against Tn, a tumor-associated carbohydrate antigen. The Tn antigen is of interest because it is expressed by several adenocarcinomas, but not normal cells. The fully synthetic glycopeptide vaccine MAG-Tn3 is composed of four arms built on three adjacent Tn moieties associated with the tetanus toxin-derived peptide TT830–844 CD4+ T-cell epitope. This promiscuous CD4+ T-cell epitope can bind to a wide range of HLA–DRB molecules and is thus expected to activate CD4+ T-cell responses in a large part of the human population. The MAG-Tn3 vaccine was formulated with the GSK-proprietary immunostimulant AS15, composed of CpG7909, MPL, and QS21, which has been shown to stimulate both innate and humoral responses, in addition to being well tolerated. Here, seven patients with localized breast cancer with a high-risk of relapse were immunized with the MAG-Tn3 vaccine formulated with AS15. The first results of phase I clinical trial demonstrated that all vaccinated patients developed high levels of Tn-specific antibodies. Moreover, these antibodies specifically recognized Tn-expressing human tumor cells and killed them through a complement-dependent cytotoxicity mechanism. Overall, this study establishes, for the first time, the capacity of a fully synthetic glycopeptide cancer vaccine to induce specific immune responses in humans.
Journal Article
Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis
by
Sharkey, Janelle
,
Dwyer, Karen M
,
Pommey, Sandra
in
5'-Nucleotidase - genetics
,
5'-Nucleotidase - immunology
,
Adenosine
2010
Extracellular adenosine is a potent immunosuppressor that accumulates during tumor growth. We performed proof-of-concept studies investigating the therapeutic potential and mechanism of action of monoclonal antibody (mAb)-based therapy against CD73, an ecto-enzyme overexpressed on breast-cancer cells that catalyzes the dephosphorylation of adenosine monophosphates into adenosine. We showed that anti-CD73 mAb therapy significantly delayed primary 4T1.2 and E0771 tumor growth in immune-competent mice and significantly inhibited the development of spontaneous 4T1.2 lung metastases. Notably, anti-CD73 mAb therapy was essentially dependent on the induction of adaptive anti-tumor immune responses. Knockdown of CD73 in 4T1.2 tumor cells confirmed the tumor-promoting effects of CD73. In addition to its immunosuppressive effect, CD73 enhanced tumor-cell chemotaxis, suggesting a role for CD73-derived adenosine in tumor metastasis. Accordingly, administration of adenosine-5'-N-ethylcarboxamide to tumor-bearing mice significantly enhanced spontaneous 4T1.2 lung metastasis. Using selective adenosine-receptor antagonists, we showed that activation of A2B adenosine receptors promoted 4T1.2 tumor-cell chemotaxis in vitro and metastasis in vivo. In conclusion, our study identified tumor-derived CD73 as a mechanism of tumor immune escape and tumor metastasis, and it also established the proof of concept that targeted therapy against CD73 can trigger adaptive anti-tumor immunity and inhibit metastasis of breast cancer.
Journal Article
Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer
by
Brenner, Malcolm K.
,
Gottschalk, Stephen
,
Suzuki, Masataka
in
Adenoviridae - genetics
,
Adenoviridae - immunology
,
adenovirotherapy
2017
In solid tumors, chimeric antigen receptor (CAR)-modified T cells must overcome the challenges of the immunosuppressive tumor microenvironment. We hypothesized that pre-treating tumors with our binary oncolytic adenovirus (CAd), which produces local oncolysis and expresses immunostimulatory molecules, would enhance the antitumor activity of HER2-specific CAR T cells, which alone are insufficient to cure solid tumors. We tested multiple cytokines in conjunction with PD-L1-blocking antibody and found that Ad-derived IL-12p70 prevents the loss of HER2.CAR-expressing T cells at the tumor site. Accordingly, we created a construct encoding the PD-L1-blocking antibody and IL-12p70 (CAd12_PDL1). In head and neck squamous cell carcinoma (HNSCC) xenograft models, combining local treatment with CAd12_PDL1 and systemic HER2.CAR T cell infusion improved survival to >100 days compared with approximately 25 days with either approach alone. This combination also controlled both primary and metastasized tumors in an orthotopic model of HNSCC. Overall, our data show that CAd12_PDL1 augments the anti-tumor effects of HER2.CAR T cells, thus controlling the growth of both primary and metastasized tumors.
Rosewell Shaw et al. combine their binary oncolytic adenoviral vector with chimeric antigen receptor-modified T cells to overcome the inherent limitations of each agent. Locally injected adenovirus expressing both PDL1 checkpoint antibody and IL-12 augments the systemic anti-tumor activity of HER2.CAR-T cells, improving survival from human head and neck cancer xenografts.
Journal Article
Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches
by
Liu, Haizhen
,
Xing, Charles
,
Steinman, Lawrence
in
5'-Nucleotidase - antagonists & inhibitors
,
5'-Nucleotidase - genetics
,
5'-Nucleotidase - immunology
2021
Anticytotoxic T lymphocyte-associated protein 4 (CTLA4) antibodies have shown potent antitumor activity, but systemic immune activation leads to severe immune-related adverse events, limiting clinical usage. We developed novel, conditionally active biologic (CAB) anti-CTLA4 antibodies that are active only in the acidic tumor microenvironment. In healthy tissue, this binding is reversibly inhibited by a novel mechanism using physiological chemicals as protein-associated chemical switches (PaCS). No enzymes or potentially immunogenic covalent modifications to the antibody are required for activation in the tumor. The novel anti-CTLA4 antibodies show similar efficacy in animal models compared to an analog of a marketed anti-CTLA4 biologic, but have markedly reduced toxicity in nonhuman primates (in combination with an anti-PD1 checkpoint inhibitor), indicating a widened therapeutic index (TI). The PaCS encompass mechanisms that are applicable to a wide array of antibody formats (e.g., ADC, bispecifics) and antigens. Examples shown here include antibodies to EpCAM, Her2, Nectin4, CD73, and CD3. Existing antibodies can be engineered readily to be made sensitive to PaCS, and the inhibitory activity can be optimized for each antigen’s varying expression level and tissue distribution. PaCS can modulate diverse physiological molecular interactions and are applicable to various pathologic conditions, enabling differential CAB antibody activities in normal versus disease microenvironments.
Journal Article
Allogeneic IgG combined with dendritic cell stimuli induce antitumour T-cell immunity
2015
Naturally occurring tumour-binding IgG antibodies are shown to initiate the rejection of allogeneic tumours, whereby Fc-receptor-mediated uptake of tumour immune complexes into dendritic cells activates tumour-reactive T cells, and intra-tumoral injection of allogeneic IgG together with dendritic cell adjuvants induces systemic T-cell-mediated antitumour responses.
Tumour rejection by IgG antibodies
Cancers generally evade host immune responses yet tumours are not transmissible between individuals, suggesting that the immune system does have the ability to recognize and kill tumour cells. This study of the fate of transplanted allogeneic tumours in mice shows that their rejection is initiated by naturally occurring tumour-binding IgG antibodies. Fcγ-receptor-mediated uptake of tumour immune complexes into dendritic cells activates tumour-reactive T cells, and intra-tumoral injection of allogeneic IgG together with dendritic cell adjuvants induces systemic T-cell-mediated antitumour responses. This work reveals a novel mechanism of tumour rejection that might be exploited clinically.
Whereas cancers grow within host tissues and evade host immunity through immune-editing and immunosuppression
1
,
2
,
3
,
4
,
5
, tumours are rarely transmissible between individuals. Much like transplanted allogeneic organs, allogeneic tumours are reliably rejected by host T cells, even when the tumour and host share the same major histocompatibility complex alleles, the most potent determinants of transplant rejection
6
,
7
,
8
,
9
,
10
. How such tumour-eradicating immunity is initiated remains unknown, although elucidating this process could provide the basis for inducing similar responses against naturally arising tumours. Here we find that allogeneic tumour rejection is initiated in mice by naturally occurring tumour-binding IgG antibodies, which enable dendritic cells (DCs) to internalize tumour antigens and subsequently activate tumour-reactive T cells. We exploited this mechanism to treat autologous and autochthonous tumours successfully. Either systemic administration of DCs loaded with allogeneic-IgG-coated tumour cells or intratumoral injection of allogeneic IgG in combination with DC stimuli induced potent T-cell-mediated antitumour immune responses, resulting in tumour eradication in mouse models of melanoma, pancreas, lung and breast cancer. Moreover, this strategy led to eradication of distant tumours and metastases, as well as the injected primary tumours. To assess the clinical relevance of these findings, we studied antibodies and cells from patients with lung cancer. T cells from these patients responded vigorously to autologous tumour antigens after culture with allogeneic-IgG-loaded DCs, recapitulating our findings in mice. These results reveal that tumour-binding allogeneic IgG can induce powerful antitumour immunity that can be exploited for cancer immunotherapy.
Journal Article
Cancer Regression and Autoimmunity Induced by Cytotoxic T Lymphocyte-Associated Antigen 4 Blockade in Patients with Metastatic Melanoma
by
Davis, Thomas A.
,
Yang, James C.
,
Restifo, Nicholas P.
in
Adult
,
Animal models
,
Antibodies, Monoclonal - adverse effects
2003
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical immunoregulatory molecule (expressed on activated T cells and a subset of regulatory T cells) capable of down-regulating T cell activation. Blockade of CTLA-4 has been shown in animal models to improve the effectiveness of cancer immunotherapy. We thus treated 14 patients with metastatic melanoma by using serial i.v. administration of a fully human anti-CTLA-4 antibody (MDX-010) in conjunction with s.c. vaccination with two modified HLA-A*0201-restricted peptides from the gp100 melanoma-associated antigen, gp100:209-217(210M) and gp100:280-288(288V). This blockade of CTLA-4 induced grade III/IV autoimmune manifestations in six patients (43%), including dermatitis, enterocolitis, hepatitis, and hypophysitis, and mediated objective cancer regression in three patients (21%; two complete and one partial responses). This study establishes CTLA-4 as an important molecule regulating tolerance to \"self\" antigens in humans and suggests a role for CTLA-4 blockade in breaking tolerance to human cancer antigens for cancer immunotherapy.
Journal Article