Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
11,371
result(s) for
"antibody formation"
Sort by:
Antibody responses to SARS-CoV-2 in patients with COVID-19
2020
We report acute antibody responses to SARS-CoV-2 in 285 patients with COVID-19. Within 19 days after symptom onset, 100% of patients tested positive for antiviral immunoglobulin-G (IgG). Seroconversion for IgG and IgM occurred simultaneously or sequentially. Both IgG and IgM titers plateaued within 6 days after seroconversion. Serological testing may be helpful for the diagnosis of suspected patients with negative RT–PCR results and for the identification of asymptomatic infections.
A cross-sectional study of hospitalized patients with COVID-19 and a longitudinal follow-up study of patients with COVID-19 suggest that SARS-CoV2-specific IgG or IgM seroconversion occurs within 20 days post symptom onset.
Journal Article
Anti-spike antibody response to natural SARS-CoV-2 infection in the general population
2021
Understanding the trajectory, duration, and determinants of antibody responses after SARS-CoV-2 infection can inform subsequent protection and risk of reinfection, however large-scale representative studies are limited. Here we estimated antibody response after SARS-CoV-2 infection in the general population using representative data from 7,256 United Kingdom COVID-19 infection survey participants who had positive swab SARS-CoV-2 PCR tests from 26-April-2020 to 14-June-2021. A latent class model classified 24% of participants as ‘non-responders’ not developing anti-spike antibodies, who were older, had higher SARS-CoV-2 cycle threshold values during infection (i.e. lower viral burden), and less frequently reported any symptoms. Among those who seroconverted, using Bayesian linear mixed models, the estimated anti-spike IgG peak level was 7.3-fold higher than the level previously associated with 50% protection against reinfection, with higher peak levels in older participants and those of non-white ethnicity. The estimated anti-spike IgG half-life was 184 days, being longer in females and those of white ethnicity. We estimated antibody levels associated with protection against reinfection likely last 1.5-2 years on average, with levels associated with protection from severe infection present for several years. These estimates could inform planning for vaccination booster strategies.
Most people who are infected with SARS-CoV-2 seroconvert within a few weeks, but the determinants and duration of the antibody response are not known. Here, the authors characterise these features of the immune response using data from a large representative community sample of the UK population.
Journal Article
Antihomotypic affinity maturation improves human B cell responses against a repetitive epitope
by
Renna, Valerio
,
Imkeller, Katharina
,
Scally, Stephen W.
in
Affinity
,
Antibodies, Protozoan - chemistry
,
Antibodies, Protozoan - genetics
2018
Affinity maturation in B cells generates antibodies with increasingly enhanced antigen-binding properties. Imkeller
et al.
investigated the maturation of human B cells that express protective antibodies against the circumsporozoite protein of the malaria-causing parasite
Plasmodium falciparum
(PfCSP). The repetitive structure of PfCSP induces mutations in B cells, facilitating direct interactions between two repeat-bound antibodies against PfCSP, which enhance antigen affinity and B cell activation. Such interactions may optimize binding and promote clustering of surface antibodies in general.
Science
, this issue p.
1358
A repetitive malaria antigen induces clonal selection and affinity maturation of human B cells expressing protective antibodies.
Affinity maturation selects B cells expressing somatically mutated antibody variants with improved antigen-binding properties to protect from invading pathogens. We determined the molecular mechanism underlying the clonal selection and affinity maturation of human B cells expressing protective antibodies against the circumsporozoite protein of the malaria parasite
Plasmodium falciparum
(PfCSP). We show in molecular detail that the repetitive nature of PfCSP facilitates direct homotypic interactions between two PfCSP repeat-bound monoclonal antibodies, thereby improving antigen affinity and B cell activation. These data provide a mechanistic explanation for the strong selection of somatic mutations that mediate homotypic antibody interactions after repeated parasite exposure in humans. Our findings demonstrate a different mode of antigen-mediated affinity maturation to improve antibody responses to PfCSP and presumably other repetitive antigens.
Journal Article
Clinical, radiographic and immunogenic effects after 1 year of tocilizumab-based treatment strategies in rheumatoid arthritis: the ACT-RAY study
by
Kissel, Karsten
,
Xavier, Ricardo M
,
Dougados, Maxime
in
Antibodies, Monoclonal, Humanized - immunology
,
Antibodies, Monoclonal, Humanized - therapeutic use
,
Antibodies, Neutralizing - blood
2014
Objective To assess the 1-year efficacy and safety of a regimen of tocilizumab plus methotrexate or placebo, which was augmented by a treat-to-target strategy from week 24. Methods ACT-RAY was a double-blind, 3-year trial. Adults with active rheumatoid arthritis despite methotrexate were randomised to add tocilizumab to ongoing methotrexate (add-on strategy) or to switch to tocilizumab plus placebo (switch strategy). Tocilizumab 8 mg/kg was administered every 4 weeks. Conventional open-label disease-modifying antirheumatic drugs (DMARDs) other than methotrexate were added at week 24 or later in patients with DAS28>3.2. Results 556 patients were randomised; 85% completed 52 weeks. The proportion of patients receiving open-label DMARDs was comparable in the add-on (29%) and switch (33%) arms. Overall, week 24 results were maintained or further improved at week 52 in both arms. Some endpoints favoured the add-on strategy. Mean changes in Genant-modified Sharp scores were small; more add-on (92.8%) than switch patients (86.1%) had no radiographic progression. At week 52, comparable numbers of patients had antidrug antibodies (ADAs; 1.5% and 2.2% of add-on and switch patients, respectively) and neutralising ADAs (0.7% and 1.8%). Rates of serious adverse events and serious infections per 100 patient-year (PY) were 11.3 and 4.5 in add-on and 16.8 and 5.5 in switch patients. In patients with normal baseline values, alanine aminotransferase elevations >3× upper limit of normal were observed in 11% of add-on and 3% of switch patients. Conclusions Despite a trend favouring the add-on strategy, these data suggest that both tocilizumab add-on and switch strategies led to meaningful clinical and radiographic responses.
Journal Article
Sex differences in vaccine-induced humoral immunity
by
Streeck, Hendrik
,
Butler, Audrey L
,
Alter, Galit
in
Autoimmune diseases
,
Autoimmunity
,
Females
2019
Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmunity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral immunity, key to long-term pathogen-specific protection.
Journal Article
Endophilin A2 Deficiency Impairs Antibody Production in Humans
by
Chouery, Eliane
,
Megarbane, Andre
,
Najemdeen, Tarek
in
Acyltransferases - genetics
,
Adolescent
,
Antibodies
2025
Endophilin A2, the sole endophilin A family member expressed in hematopoietic cells, regulates various aspects of membrane dynamics, including autophagy and endocytosis. Recent studies in rodents highlight the essential role of endophilin A2 in modulating immune responses. Here we report a homozygous frameshift variant in the
SH3GL1
gene (NM_003025.3:c.427delC; p.Leu143Serfs*9), detected by whole exome sequencing in a 14-year-old boy with predominantly antibody deficiency. The patient who is issued from a consanguineous Lebanese family, presents since the age of 18 months with recurrent respiratory tract infections, low peripheral B cell counts and pan-hypogammaglobulinemia, with no history of opportunistic infections. This defect is associated with decrease in switched memory B cells development, impaired in-vitro B cell proliferation and diminished in-vitro IgG production. The detected variant in
SH3GL1
segregates with the disease in the family. It significantly decreases the expression of the protein in the patient’s peripheral blood compared to healthy controls, thus confirming its pathogenicity. Interestingly, endophilin A2-deficient
Sh3gl1
−/−
mice have been reported to present defects in germinal center B cell responses and in the production of high-affinity IgG. Our data suggests that endophilin A2 deficiency impairs antibody production in humans. Reporting further cases with mutations in
SH3GL1
is needed to better characterize the inborn error of immunity linked to this gene.
Journal Article
Enhancing SIV-specific immunity in vivo by PD-1 blockade
by
Pladevega, Annette
,
Zhu, Baogong
,
Ahmed, Rafi
in
Animals
,
Antibodies, Monoclonal - administration & dosage
,
Antibodies, Monoclonal - metabolism
2009
Immunity boost in HIV/AIDS
Blockade of PD-1 (programmed death-1), a B7/CD28 family immune-receptor molecule that inhibits the immune response to chronic viral infections, is shown to improve anti-viral immune responses in SIV-infected macaques without adverse side effects. The treatment, which used an antibody specific to human PD-1, also prolonged survival. PD-1 blockade was effective without antiretroviral drugs, suggesting that a similar approach might also be effective in HIV/AIDS patients, combined perhaps with drugs or therapeutic vaccination.
This study shows that blockade of PD-1 in SIV-infected macaques transiently increases the frequency, activation and functionality markers of virus-specific CD8 T cells without adverse side effects.
Chronic immunodeficiency virus infections are characterized by dysfunctional cellular and humoral antiviral immune responses
1
,
2
,
3
. As such, immune modulatory therapies that enhance and/or restore the function of virus-specific immunity may protect from disease progression. Here we investigate the safety and immune restoration potential of blockade of the co-inhibitory receptor programmed death 1 (PD-1)
4
,
5
during chronic simian immunodeficiency virus (SIV) infection in macaques. We demonstrate that PD-1 blockade using an antibody to PD-1 is well tolerated and results in rapid expansion of virus-specific CD8 T cells with improved functional quality. This enhanced T-cell immunity was seen in the blood and also in the gut, a major reservoir of SIV infection. PD-1 blockade also resulted in proliferation of memory B cells and increases in SIV envelope-specific antibody. These improved immune responses were associated with significant reductions in plasma viral load and also prolonged the survival of SIV-infected macaques. Blockade was effective during the early (week 10) as well as late (∼week 90) phases of chronic infection even under conditions of severe lymphopenia. These results demonstrate enhancement of both cellular and humoral immune responses during a pathogenic immunodeficiency virus infection by blocking a single inhibitory pathway and identify a novel therapeutic approach for control of human immunodeficiency virus infections.
Journal Article
Circulating T follicular regulatory and helper cells have memory-like properties
by
Godec, Jernej
,
Sharpe, Arlene H.
,
Alvarez, David
in
Animals
,
Antibody Formation - genetics
,
Antibody Formation - immunology
2014
Follicular Tregs (Tfr cells) inhibit antibody production, whereas follicular Th cells (Tfh cells) stimulate it. Tfr cells are found in blood; however, relatively little is known about the developmental signals for these cells or their functions. Here we demonstrated that circulating Tfr and Tfh cells share properties of memory cells and are distinct from effector Tfr and Tfh cells found within lymph nodes (LNs). Circulating memory-like Tfh cells were potently reactivated by DCs, homed to germinal centers, and produced more cytokines than did effector LN Tfh cells. Circulating memory-like Tfr cells persisted for long periods of time in vivo and homed to germinal centers after reactivation. Effector LN Tfr cells suppressed Tfh cell activation and production of cytokines, including IL-21, and inhibited class switch recombination and B cell activation. The suppressive function of this population was not dependent on specific antigen. Similar to LN effector Tfr cells, circulating Tfr cells also suppressed B and Tfh cells, but with a much lower capacity. Our data indicate that circulating memory-like Tfr cells are less suppressive than LN Tfr cells and circulating memory-like Tfh cells are more potent than LN effector Tfh cells; therefore, these circulating populations can provide rapid and robust systemic B cell help during secondary antigen exposure.
Journal Article
A single T cell epitope drives the neutralizing anti-drug antibody response to natalizumab in multiple sclerosis patients
by
Lanzavecchia, Antonio
,
Mikol, Vincent
,
Pouzieux, Stéphanie
in
Antibody response
,
Autoimmune diseases
,
CD4 antigen
2019
Natalizumab (NZM), a humanized monoclonal IgG4 antibody to α4 integrins, is used to treat patients with relapsing-remitting multiple sclerosis (MS)1,2, but in about 6% of the cases persistent neutralizing anti-drug antibodies (ADAs) are induced leading to therapy discontinuation3,4. To understand the basis of the ADA response and the mechanism of ADA-mediated neutralization, we performed an in-depth analysis of the B and T cell responses in two patients. By characterizing a large panel of NZM-specific monoclonal antibodies, we found that, in both patients, the response was polyclonal and targeted different epitopes of the NZM idiotype. The neutralizing activity was acquired through somatic mutations and correlated with a slow dissociation rate, a finding that was supported by structural data. Interestingly, in both patients, the analysis of the CD4+ T cell response, combined with mass spectrometry-based peptidomics, revealed a single immunodominant T cell epitope spanning the FR2-CDR2 region of the NZM light chain. Moreover, a CDR2-modified version of NZM was not recognized by T cells, while retaining binding to α4 integrins. Collectively, our integrated analysis identifies the basis of T-B collaboration that leads to ADA-mediated therapeutic resistance and delineates an approach to design novel deimmunized antibodies for autoimmune disease and cancer treatment.
Journal Article
Durability for 12 months of antibody response to a booster dose of monovalent BNT162b2 in adults who had initially received 2 doses of inactivated vaccine
2024
This study examined the strength and durability of antibody responses in 277 adults who received a heterologous third dose of the BNT162b2 vaccine, following two doses of an inactivated vaccine. Neutralizing antibody levels against both the ancestral virus and Omicron BA.2 subvariant decreased from one month to 6 months after the third dose, and were then maintained at 12 months. Participants who received both a fourth dose and reported a SARS-CoV-2 infection had the highest antibody titers at 365 days after the third dose. Individuals with chronic medical conditions had lower antibody levels against the Omicron BA.2 subvariant at 12 months after the third dose. The results suggest that the heterologous third dose provides durable neutralizing antibody responses, which may be influenced by subsequent infection or vaccination and pre-existing medical conditions. These findings may help explain the differences in immune protection between vaccination and natural infection.
Journal Article