Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,622 result(s) for "antioxidant function"
Sort by:
Effects of Supplemental Chinese Herbs on Growth Performance, Blood Antioxidant Function and Immunity Status in Holstein Dairy Heifers Fed High Fibre Diet
Two experiments were carried out to investigate the effects of supplemental Chinese herbs, Fructus Ligustri Lucidi (FLL), Radix Astragali (RA) and Radix Codonopsis (RC) on growth performance, blood antioxidant and immune function in Holstein dairy heifers fed high fibre diet. Experiment 1 indicated that the supplementation of the three herbs had no effect on dry matter intake. FLL Supplementation increased heifers average daily gain (ADG), final body weight and feed efficiency. Experiment 2 indicated that FLL supplementation improved the blood antioxidant function with higher concentration of superoxide dismutase (SOD) and lower concentration of malondialdehyde (MDA), and improved immune function with lower concentrations of prostaglandin E 2 (PGE 2 ) and immunoreactive fibronectin (IFN-γ). Addition of FLL increased apparent digestibility of diet's dry matter and organic matter than the other groups. It was demonstrated that FLL supplementation improved nutrient digestion, feed efficiency, blood antioxidant function, immune and growth performance for Holstein dairy heifers.
Effect of Heavy Metal Contamination in the Environment on Antioxidant Function in Wumeng Semi-fine Wool Sheep in Southwest China
Many environmental accidents have led to worldwide heavy metal pollution, raising concern about heavy metal toxicity in Southwest China. To study the effects of Cd and Pb in the environment on antioxidant function in Wumeng semi-fine wool sheep, contents of Cu, Zn, Mn, Mo, Fe, Se, Cd, and Pb were measured in irrigation water, soil, herbage, and animal tissues. Hematological and biochemical parameters were also determined. The concentrations of Cu, Zn, Cd, and Pb in affected samples of irrigation water, soil, herbage, and tissues were significantly higher than those in the control (P < 0.01). There was no significant difference in other element contents between affected pastures and control areas. The occurrence of anemia affected Wumeng semi-fine wool sheep. The activities of SOD, CAT, and GSH-Px in affected animals were significantly decreased than those in the control (P < 0.01). Content of MDA in serum in affected animals was significantly increased than that in control (P < 0.01). Serum T-AOC in affected animal was significantly lower than that in control (P < 0.01). Consequently, it is suggested that heavy metal contamination in natural habitat caused serious harm to antioxidant function in Wumeng semi-fine wool sheep.
Pterostilbene attenuates liver injury and oxidative stress in intrauterine growth–retarded weanling piglets
The aim of the present study was to investigate the potential of pterostilbene, a beneficial component primarily found in blueberries, to alleviate the intrauterine growth retardation (IUGR)-induced early liver injury and oxidative stress in a porcine model. Thirty-six IUGR piglets and an equal number of normal birth weight (NBW) counterparts received a diet with or without pterostilbene (250 mg/kg diet) during the first week post-weaning. Parameters related to the hepatic injury, oxidative stress, and antioxidant defense mechanisms were analyzed. Relative to NBW, IUGR induced liver injury, which corresponded to increments in circulating alanine transaminase activity and hepatic apoptotic cell rate, superoxide radical generation, and the accumulation of oxidative damage products (P < 0.05). Administering pterostilbene reduced plasma transaminase activities, decreased hepatocyte apoptosis rate, and prevented the augmented levels of hepatic superoxide anion, 8-hydroxy-2 deoxyguanosine, and 4-hydroxynonenal-modified protein (P < 0.05). In terms of the hepatic antioxidant function, pterostilbene was efficient in improving the superoxide dismutase activity and the metabolic cycle between reduced glutathione and its oxidized form (P < 0.05). The pterostilbene-supplemented diet facilitated the nuclear translocation of nuclear factor erythroid-2-related factor 2 (NRF2) and promoted the expression levels of superoxide dismutase 2 in the liver of IUGR piglets (P < 0.05). This study indicates that pterostilbene treatment has an auxiliary therapeutic potential to ameliorate early liver injury in IUGR neonates, presumably by stimulating the NRF2 signals and the associated antioxidant function. •Intrauterine growth retardation induces liver injury in young piglets.•Pterostilbene alleviates hepatic damage and oxidative stress in piglets.•Pterostilbene improves hepatic antioxidant function in piglets.•Pterostilbene facilitates nuclear factor erythroid-2–related factor 2 signals.
Effects of Nano-copper on Antioxidant Function in Copper-Deprived Guizhou Black Goats
Guizhou black goats are essential to the production system in the Wumeng prairie in the Western China. This study aimed to determine the influence of nano-copper on antioxidant system in copper-deprived Guizhou black goats. We analyzed mineral contents in soil, forage, and goats’ tissues. Blood parameters were also determined. The results showed that copper concentrations in soil and forage were significantly lower, and the iron content was significantly higher in affected compared with healthy area (P < 0.01). Copper concentrations in animal tissues (blood, liver, and hair) were significantly lower and iron content was significantly higher in affected compared with healthy goats (P < 0.01). After supplementation of nano-copper or copper sulfate, copper concentration in blood was significantly increased and iron content was significantly lower (P < 0.01). Compared with nano-copper group, the effect of copper sulfate was slower. Hemoglobin levels, erythrocyte count, and packed cell volume from nano-copper and copper sulfate groups were significantly higher than those in copper-deprived goats (P < 0.01). Compared with the copper-deprived Guizhou black goats, serum ceruloplasmin levels in nano-copper and copper sulfate groups were significantly increased, while serum lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and creatinine were significantly decreased (P < 0.01). Compared with the copper-deprived animals, serum superoxide dismutase, glutathione peroxidase, catalase, and total antioxidant capacity in nano-copper and copper sulfate groups were significantly higher, while serum malondialdehyde content was significantly lower (P < 0.01). The effect of copper sulfate group was significantly lower than that in nano-copper group (P < 0.01). Consequently, nano-copper could not only markedly increase the copper content in blood in copper-deprived Guizhou black goats but also much improves the antioxidant capacity.
Physiological and Transcriptome Analysis Reveal the Regulation Mechanism Underlying the Muscle Quality Effect of Dietary Schisandra chinensis in Triploid Crucian Carp (Carassius auratus)
Schisandra chinensis (sc) is generally demonstrated to improve antioxidant and immune functions in mammal. The present study through physiological and transcriptome analysis revealed alterations in muscle metabolisms of triploid crucian carp (Carassius auratus) cultured at different concentrations of S. chinensis diets (sc0, sc0.125%, sc0.25%, sc0.5%, sc1%, sc2%) after 8 weeks. The serum antioxidant enzyme activities analysis showed that dietary S. chinensis could reduce oxidative stress and increase organismic antioxidant capacity. Meanwhile, the detected results of muscle components presented that the amino acids and two flavor nucleotides of GMP and IMP significantly elevated while muscle crude lipid significantly reduced in S. chinensis feeding groups. In addition, springiness, chewiness, and fiber density in S. chinensis feeding groups muscle were significantly upregulated while muscle fiber diameter and area showed an opposite trend. By comparative transcriptome analysis of the muscles, functional enrichments of differentially expressed genes showed that multiple terms were related to purine metabolism, glycerolipid metabolism, regulation of actin cytoskeleton, and peroxisome. Finally, some key hub genes such as egln, gst, ggct, su1b, pi3kr4, myh9, lpl, gcdh, mylk, and col4a were identified by weighted gene co-expression network analysis. Taken together, our findings facilitate the understanding of the molecular basis underlying the muscle quality effect of dietary S. chinensis in triploid crucian carp, which provides valuable insights into the nutritional strategies of the aquaculture industry.
A New Method of Extracting Polygonatum sibiricum Polysaccharide with Antioxidant Function: Ultrasound-Assisted Extraction-Deep Eutectic Solvents Method
Polygonatum sibiricum Polysaccharide (PsP) with antioxidant function is the main active component of Polygonatum sibiricum (P.sibiricum). The currently poor extraction yield and extraction methods of PsP cannot meet the application of that in food industrial production. In this research, an ultrasound-assisted extraction-deep eutectic solvents (UAE-DESs) method, which has never been used in the PsP industry, was first used to extract PsP. The extraction conditions were optimized by the response surface method (RSM). Both the extraction yield and antioxidant function were simultaneously considered during the optimization process. The indicators of PsP’s level and antioxidant activity in vitro were used to present the extraction yield of the UAE-DESs method, the purity, and the antioxidant effect of PsP. Under the optimal conditions, which included a liquid–solid ratio of 26:1 (mL:g), extraction temperature of 80 °C, ultrasonic time of 51 min, and ultrasonic power of 82 W, the PsP extraction yield could reach (43.61 ± 0.09)%, which was obviously higher than single DESs (33.81%) and UAE (5.83%), respectively, and the PsP appeared favorably antioxidant function. This research proposed an efficient extraction method for PsP, filled the basic research gap, and further improved the development of PsP as a dietary supplement with antioxidant function in the food industry.
The Antioxidant Functions of Tocopherol and Tocotrienol Homologues in Oils, Fats, and Food Systems
This review paper is focused on the relative antioxidant activities of tocopherols and tocotrienols in oils and fats and certain food systems. α-Tocopherol generally showed better antioxidant activity than γ-tocopherol in fats and oils, but at higher concentrations γ-tocopherol was found to be a more active antioxidant. The results of studies on the optimum antioxidant concentrations of tocopherols in oils and fats indicated that the optimal level for α-tocopherol is usually lower than other tocopherols, meaning less α-tocopherol is needed for maximum antioxidant protection. There are comparatively very few studies related to the antioxidant activities of tocotrienols in oils and fats. It has been stated that generally γ-tocotrienol has higher antioxidant effect than α-tocotrienol, and tocotrienols may be better antioxidants than their corresponding tocopherols in certain oils and fats systems. Studies on the antioxidant activity of various tocopherols in food systems are varied and cannot be uniformly evaluated because experiments have generally focused on different foods and used various methods for the detection of antioxidant activities. Depending on the food system, in certain cases tocopherols were better antioxidants than synthetic antioxidants such as butylhydroxy toluene (BHT) or butylhydroxy anisole (BHA). However, in certain other food systems the synthetic antioxidants were more effective to increase the shelf life and the stability of foods than those containing tocopherols.
Oxidative stress causes liver injury via the damage of redox system and the apoptosis induced by mitochondria of broiler
The aim of this study was conducted to explore the effects of oxidative stress on the redox system, mitochondrial function, and apoptosis in liver of broilers. 144 one-day-old male Ross-308 broilers from the same batch had been prepared in advance and were divided into 3 treatments: normal control group (without intraperitoneal injection), normal saline group (intraperitoneal injection of normal saline), and hydrogen peroxide (H2O2) group (intraperitoneal injection of H2O2) with 6 replicates of 8 chickens each. The experimental period was 42 days. The injection volumes were 1.0 mL/kg of Ross-308 broiler body weight. On the 42nd day of the experimental period, two Ross-308 broilers were randomly selected from each cage, a total of 36 broilers were stunned by electric shock and slaughtered to collect liver samples. The results showed that compared with the non-injection group and the injection of saline group, H2O2 exposure elevated the relative weight of liver and the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in serum of Ross-308 broilers (p < 0.05). Meanwhile, compared with the non-injection group and the injection of saline group, the H2O2 exposure increased the levels of reactive oxygen species (ROS), MDA, lipid peroxide (LPO) and protein carbonyl, decreased the activities of total superoxide dismutase (T-SOD), catalase (CAT), total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) (p < 0.05). Compared with the non-injection group and the injection of saline group, the H2O2 exposure caused microvesicular steatosis and mitochondrial vacuolisation in the liver tissues of broilers. Additionally, after H2O2 exposure, the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) positive cells were reduced and the relative percentage of hepatocyte apoptosis were increased in the liver tissues of broilers (p < 0.05). The conclusion of this study is that the oxidative stress induced by intraperitoneal injection of H2O2 could induce excessive production of ROS in broiler liver, which damage the antioxidant status and mitochondrial function of liver cells, leading to cell apoptosis.HIGHLIGHTSOxidative stress can cause severe damage to the liver of broilers.Oxidative stress can mainly damage liver antioxidant functionOxidative stress can induce cell apoptosis by damaging mitochondria in the liver of broilers
Responses of Chinese Merino Sheep (Junken Type) on Copper-Deprived Natural Pasture
To research responses of Chinese Merino Sheep (Junken type) to copper-deprived natural pasture, we analyzed mineral contents in soil, forage, and sheep tissues. Physiological and biochemical parameters were also determined. Results showed that copper concentrations in soil and forage from affected pastures were significantly lower than those in healthy ranges (P < 0.01). Copper contents in animal tissues (blood, liver, and wool) from affected Chinese Merino Sheep were also significantly lower than those in healthy sheep (P < 0.01). Hemoglobin levels, packed cell volume, mean corpuscular volume, and mean corpuscular hemoglobin from affected Chinese Merino Sheep were significantly lower than those in healthy animals (P < 0.01). Serum ceruloplasmin was significantly lower in affected Chinese Merino Sheep than that in healthy animals, while activities of lactate dehydrogenase, alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase in serum were significantly higher in affected compared with healthy animals (P < 0.01). The levels of superoxide dismutase, glutathione peroxidase, total antioxidant capacity, and catalase in serum were significantly lower, and the malondialdehyde content was significantly higher in affected compared with healthy sheep (P < 0.01). The levels of interleukin-2, interleukin 6, interleukin-1β, immunoglobulin A, immunoglobulin M, and immunoglobulin G in copper-deprived sheep were significantly lower than those in healthy animals (P < 0.01). Copper deprivation in forage not only influenced the mineral content in blood but also severely disrupted blood parameters (physiology, biochemistry, immunity, and antioxidant) in Chinese Merino Sheep.
Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep
The experiments were to study the effects of Se-yeast on immune and antioxidant in Selenium(Se)-deprived Pishan red sheep in Southern Xinjiang, China. The samples of soil, forage, and animal tissues were collected, and used for measuring mineral content, physiological parameter, and biochemical values. These findings showed that the Se contents in affected soil and forage were markedly lower than those from unaffected soil and forage (P < 0.01). Se in affected blood and wool were also extremely lower than those from healthy Pishan red sheep (P < 0.01). The hemoglobin, packed cell volume, platelet count, Glutathione peroxidase, and total antioxidant capacity in the affected Pishan red sheep were markedly lower than those from healthy ones too (P < 0.01). The levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide in Pishan red sheep from affected pastures were extremely higher than those from healthy ones (P < 0.01). The levels of interleukin (IL)-1β, Interleukin-2, tumor necrosis factor-α and interleukin-6 from serum were markedly decreased in affected Pishan red sheep(P < 0.01). The Pishan red sheep in Se-deprived pasture were treated by orally with Se-yeast, the amount of Se in the blood markedly increased in treated animals. Meanwhile, the immune and antioxidant indicator was returned to the healthy values. Consequently, our findings were indicated that Se-deprived forage caused oxidative damage, and a serious threat to the immune function in animals. The Se-yeast is more effective in the Se-deficient Pishan red sheep including blood Se content, immune function and the antioxidant capacity.