Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
3
result(s) for
"antiplasmodial and cytotoxic activities"
Sort by:
Characterization, Antiplasmodial and Cytotoxic Activities of Green Synthesized Iron Oxide Nanoparticles Using Nephrolepis exaltata Aqueous Extract
by
Fozia, Fozia
,
Ahmad, Ijaz
,
Ullah, Riaz
in
antiplasmodial and cytotoxic activities
,
Biocompatibility
,
characterization
2022
The use of non-toxic synthesis of iron oxide nanoparticles (FeO NPs) by an aqueous plant extract has proven to be a viable and environmentally friendly method. Therefore, the present investigation is based on the FeO NPs synthesis by means of FeCl3·6H2O as a precursor, and the plant extract of Nephrolepis exaltata (N. exaltata) serves as a capping and reducing agent. Various techniques were used to examine the synthesized FeO NPs, such as UV-Visible Spectroscopy (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). The FT-IR studies were used to identify different photoactive biomolecules at 3285, 2928, 1415, 1170, and 600 cm−1 in the wavenumber range from 4000 to 400 cm−1, indicating the -OH, C-H, C-O, C-C, and M-O groups, respectively. The XRD examination exhibited crystallinity, and the average diameter of the particle was 16 nm. The spherical nature of synthesized FeO NPs was recognized by SEM images, while the elemental composition of nanoparticles was identified by an EDX spectrophotometer. The antiplasmodial activity of synthesized FeO NPs was investigated against Plasmodium parasites. The antiplasmodial property of FeO NPs was evaluated by means of parasite inhibitory concentration, which showed higher efficiency (62 ± 1.3 at 25 μg/mL) against Plasmodium parasite if compared to plant extracts and precursor. The cytotoxicity of FeO NPs was also assessed in human peripheral blood mononuclear cells (PBMCs) under in vitro conditions. The lack of toxic effects through FeO NPs keeps them more effective for use in pharmaceutical and medical applications.
Journal Article
OSMAC Method to Assess Impact of Culture Parameters on Metabolomic Diversity and Biological Activity of Marine-Derived Actinobacteria
by
Dufossé, Laurent
,
Gauvin-Bialecki, Anne
,
Le Loarer, Alexandre
in
Actinobacteria
,
Actinomycetes
,
Analytical chemistry
2024
Actinobacteria are known for their production of bioactive specialized metabolites, but they are still under-exploited. This study uses the “One Strain Many Compounds” (OSMAC) method to explore the potential of three preselected marine-derived actinobacteria: Salinispora arenicola (SH-78) and two Micromonospora sp. strains (SH-82 and SH-57). Various parameters, including the duration of the culture and the nature of the growth medium, were modified to assess their impact on the production of specialized metabolites. This approach involved a characterization based on chemical analysis completed with the construction of molecular networks and biological testing to evaluate cytotoxic and antiplasmodial activities. The results indicated that the influence of culture parameters depended on the studied species and also varied in relation with the microbial metabolites targeted. However, common favorable parameters could be observed for all strains such as an increase in the duration of the culture or the use of the A1 medium. For Micromonospora sp. SH-82, the solid A1 medium culture over 21 days favored a greater chemical diversity. A rise in the antiplasmodial activity was observed with this culture duration, with a IC50 twice as low as for the 14-day culture. Micromonospora sp. SH-57 produced more diverse natural products in liquid culture, with approximately 54% of nodes from the molecular network specifically linked to the type of culture support. Enhanced biological activities were also observed with specific sets of parameters. Finally, for Salinispora arenicola SH-78, liquid culture allowed a greater diversity of metabolites, but intensity variations were specifically observed for some metabolites under other conditions. Notably, compounds related to staurosporine were more abundant in solid culture. Consequently, in the range of the chosen parameters, optimal conditions to enhance metabolic diversity and biological activities in these three marine-derived actinobacteria were identified, paving the way for future isolation works.
Journal Article
Prioritization of Microorganisms Isolated from the Indian Ocean Sponge Scopalina hapalia Based on Metabolomic Diversity and Biological Activity for the Discovery of Natural Products
by
Dufossé, Laurent
,
Wolfender, Jean-Luc
,
Gauvin-Bialecki, Anne
in
antimalarials
,
antiplasmodial activity
,
antiplasmodial properties
2023
Despite considerable advances in medicine and technology, humanity still faces many deadly diseases such as cancer and malaria. In order to find appropriate treatments, the discovery of new bioactive substances is essential. Therefore, research is now turning to less frequently explored habitats with exceptional biodiversity such as the marine environment. Many studies have demonstrated the therapeutic potential of bioactive compounds from marine macro- and microorganisms. In this study, nine microbial strains isolated from an Indian Ocean sponge, Scopalina hapalia, were screened for their chemical potential. The isolates belong to different phyla, some of which are already known for their production of secondary metabolites, such as the actinobacteria. This article aims at describing the selection method used to identify the most promising microorganisms in the field of active metabolites production. The method is based on the combination of their biological and chemical screening, coupled with the use of bioinformatic tools. The dereplication of microbial extracts and the creation of a molecular network revealed the presence of known bioactive molecules such as staurosporin, erythromycin and chaetoglobosins. Molecular network exploration indicated the possible presence of novel compounds in clusters of interest. The biological activities targeted in the study were cytotoxicity against the HCT-116 and MDA-MB-231 cell lines and antiplasmodial activity against Plasmodium falciparum 3D7. Chaetomium globosum SH-123 and Salinispora arenicola SH-78 strains actually showed remarkable cytotoxic and antiplasmodial activities, while Micromonospora fluostatini SH-82 demonstrated promising antiplasmodial effects. The ranking of the microorganisms as a result of the different screening steps allowed the selection of a promising strain, Micromonospora fluostatini SH-82, as a premium candidate for the discovery of new drugs.
Journal Article