Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
992
result(s) for
"antiproliferative agents"
Sort by:
Fruit Seeds as Sources of Bioactive Compounds: Sustainable Production of High Value-Added Ingredients from By-Products within Circular Economy
by
Mattila, Pirjo
,
Fidelis, Marina
,
Kabbas Junior, Tufy
in
Agriculture - economics
,
antioxidant activity
,
Antioxidants - chemistry
2019
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Journal Article
An Insight into Symmetrical Cyanine Dyes as Promising Selective Antiproliferative Agents in Caco-2 Colorectal Cancer Cells
by
Nunes, Maria J.
,
Maia, Ana
,
Silvestre, Samuel
in
Antimitotic agents
,
Antineoplastic agents
,
Antineoplastic Agents - pharmacology
2022
Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure–activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration–viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.
Journal Article
Phosphine Oxide Indenoquinoline Derivatives: Synthesis and Biological Evaluation as Topoisomerase I Inhibitors and Antiproliferative Agents
by
Rodriguez-Paniagua, Alba
,
Alonso, Concepción
,
Tesauro, Cinzia
in
Antineoplastic Agents - chemical synthesis
,
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
2024
The synthesis of phosphorous indenoquinolines and their biological evaluation as topoisomerase 1 (TOP1) inhibitors and antiproliferative agents were performed. First, the preparation of new hybrid 5H-indeno[2,1-c]quinolines with a phosphine oxide group was performed by a two-step Povarov-type [4+2]-cycloaddition reaction between the corresponding phosphorated aldimines with indene in the presence of BF3·Et2O. Subsequent oxidation of the methylene present in the structure resulted in the corresponding indeno[2,1-c]quinolin-7-one phosphine oxides 10. The synthesized derivatives were evaluated as TOP1 inhibitors showing higher inhibition values than CPT at prolonged incubation times (5 min). Inhibition of TOP1 was even observed after 30 min of incubation. The cytotoxic activities of these compounds were also studied against different cancer cell lines and a non-cancerous cell line. While some compounds showed cytotoxicity against some cancerous cells, none of the compounds showed any cytotoxicity against the non-cancerous cell line, MRC-5, in contrast to CPT, which exhibits high toxicity against this cell line. These results represent a very interesting advance since the heterocyclic phosphine oxide derivatives have important properties as TOP1 inhibitors and show an interesting cytotoxicity against different cell lines.
Journal Article
Synthesis and Bioactivity Assessment of Novel Spiro Pyrazole-Oxindole Congeners Exhibiting Potent and Selective in vitro Anticancer Effects
by
El-Sawy, Eslam R.
,
Abdelhamid, Sayeda A.
,
Ebied, Manal S.
in
Acids
,
Antimicrobial agents
,
Antineoplastic Agents - chemistry
2020
The present work aims to design and synthesize novel series of spiro pyrazole-3,3’-oxindoles analogues and investigate their bioactivity as antioxidant and antimicrobial agents, as well as antiproliferative potency against selected human cancerous cell lines (i.e., breast, MCF-7; colon, HCT-116 and liver, HepG-2) relative to healthy noncancerous control skin fibroblast cells (BJ-1). The mechanism of their cytotoxic activity has been also examined by immunoassaying the levels of key anti- and proapoptotic protein markers. The analytical and spectral data of the all synthesized target congeners were compatible with their structures. Synthesized compounds showed diverse moderate to powerful antimicrobial and antioxidant activities. Results of MTT assay revealed that seven synthesized compounds (i.e., 11a, 11b, 12a, 12b, 13b, 13c and 13h) particularly exhibited significant cytotoxicity against the three cancerous cell lines under investigation. Ranges of IC50 values obtained were 5.7–21.3 and 5.8–37.4 µg/mL against HCT-116 and MCF-7, respectively; which is 3.8 and 6.5-fold (based on the least IC50 values) more significant relative to the reference chemotherapeutic drug doxorubicin. In HepG-2 cells, the analogue 13h exhibited the highest cytotoxicity with IC50 value of 19.2µg/mL relative to doxorubicin (IC50 = 21.6µg/mL). The observed cytotoxicity was specific to cancerous cells, as evidenced by the minimal toxicity in the noncancerous control skin-fibroblast cells. ELISA results indicated that the observed antiproliferative effect against examined cancer cell lines is mediated via engaging the activation of apoptosis as illustrated by the significant increase in proapoptotic protein markers (p53, bax and caspase-3) and reduction in the antiapoptotic marker bcl-2. Taken together, results of the present study emphasize the potential of spiro pyrazole-oxindole analogues as valuable candidate anticancer agents against human cancer cells.
Journal Article
A New Demand for Improved Selectivity and Potency of Cyanine Dyes as Antiproliferative Agents Against Colorectal Cancer Cells
by
Nunes, Maria J.
,
Maia, Ana
,
Sousa, Ângela
in
Antineoplastic Agents - chemical synthesis
,
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
2024
Cancer treatment remains a significant challenge, with chemotherapy still being one of the most common therapeutic approaches. Based on our initial studies of symmetric monomethine cyanine dyes, which showed potential against colorectal cancer, this study explored several asymmetric cyanines, aiming to develop more potent and selective antitumor agents, particularly against colorectal cancer. In pursuit of this goal, we have designed, synthesized, and structurally characterized twelve new cyanine dyes. Their antiproliferative effects were then investigated in vitro against both tumor and non-tumor cell lines. Notably, the two most promising dyes in terms of potency and selectivity against Caco-2 colorectal cancer cells were derived from the combination of N-methylbenzoxazole and N-methylquinoline (dye 5), as well as N-ethylbenzothiazole and N-ethyl-6-nitrobenzothiazole (dye 10). The potential mechanisms behind their antiproliferative action were also explored, revealing that both dyes penetrate cells and localize within the cytoplasm and nucleus. Furthermore, dye 5 was found to slightly induce apoptosis without causing significant cell cycle arrest, in contrast to dye 10, which increased the number of cells in the G0/G1 phase. Interestingly, both dyes exhibited marked topoisomerase II inhibitory effects, particularly cyanine 5, which may further explain their antiproliferative activity. Additionally, drug-likeness properties were predicted for both dyes. Overall, cyanine 5 emerged as the most promising candidate for further investigation as a potential treatment for colorectal cancer.
Journal Article
2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases
by
López, Óscar
,
Fuentes-Aguilar, Alma
,
Supuran, Claudiu T.
in
Antineoplastic Agents - chemical synthesis
,
Antineoplastic Agents - chemistry
,
Antineoplastic Agents - pharmacology
2022
We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (K
i
within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (K
i
> 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.
Journal Article
Harnessing coumarin-thio(seleno)cyanate conjugates: potent In vivo antiproliferative agents targeting carbonic anhydrases
by
López, Óscar
,
Supuran, Claudiu T.
,
Fernández-Bolaños, José G.
in
Animals
,
Antineoplastic Agents - chemical synthesis
,
Antineoplastic Agents - chemistry
2025
We synthesised coumarin-based derivatives bearing thio- and selenocyanates to selectively inhibit tumour-associated carbonic anhydrases (CAs) IX and XII and to exert antiproliferative effects on tumour cells. Structural variations included chalcogen atom type (S, Se), substitutions at C-3/C-4, and tether length at C-7 of the coumarin core. Thiocyanates
and
showed potent CA IX/XII inhibition (
= 17.9-27.4 nM) with >5000-fold selectivity over off-target isoforms (CAs I and II). Selenocyanate
exhibited strong antiproliferative activity (GI
= 0.78-2.6 µM) across six human solid tumour cell lines. Mechanistic studies revealed a cytostatic effect
cell cycle arrest and reduced mitotic progression.
assays in
confirmed selective cytostatic action of selenocyanate
, reducing tumorous germline size without affecting healthy tissues at therapeutic doses.
Journal Article
Polyaromatic Bis(indolyl)methane Derivatives with Antiproliferative and Antiparasitic Activity
by
Raposo, Maria Manuela M.
,
Morales, Juan C.
,
Gonçalves, Raquel C. R.
in
African trypanosomiasis
,
antiproliferative agent
,
antiprotozoal agent
2023
Bis(indolyl)methanes (BIMs) are a class of compounds that have been recognized as an important core in the design of drugs with important pharmacological properties, such as promising anticancer and antiparasitic activities. Here, we explored the biological activity of the BIM core functionalized with different (hetero)aromatic moieties. We synthesized substituted BIM derivatives with triphenylamine, N,N-dimethyl-1-naphthylamine and 8-hydroxylquinolyl groups, studied their photophysical properties and evaluated their in vitro antiproliferative and antiparasitic activities. The triphenylamine BIM derivative 2a displayed an IC50 of 3.21, 3.30 and 3.93 μM against Trypanosoma brucei, Leishmania major and HT-29 cancer cell line, respectively. The selectivity index demonstrated that compound 2a was up to eight-fold more active against the parasites and HT-29 than against the healthy cell line MRC-5. Fluorescence microscopy studies with MRC-5 cells and T. brucei parasites incubated with derivative 2a indicate that the compound seems to accumulate in the cell’s mitochondria and in the parasite’s nucleus. In conclusion, the BIM scaffold functionalized with the triphenylamine moiety proved to be the most promising antiparasitic and anticancer agent of this series.
Journal Article
Structure–Activity Relationship Studies on Highly Functionalized Pyrazole Hydrazones and Amides as Antiproliferative and Antioxidant Agents
by
Lusardi, Matteo
,
Russo, Eleonora
,
Caviglia, Debora
in
Acetylcysteine
,
Amides
,
Amides - chemistry
2024
Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure–activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10–22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure–activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.
Journal Article
X-ray Structures and Computational Studies of Two Bioactive 2-(Adamantane-1-carbonyl)-N-substituted Hydrazine-1-carbothioamides
by
El-Emam, Ali A.
,
Hassan, Hanan M.
,
Mohamed, Ahmed A. B.
in
adamantane
,
Adamantane - pharmacology
,
CLP–Pixel
2022
Two biologically active adamantane-linked hydrazine-1-carbothioamide derivatives, namely 2-(adamantane-1-carbonyl)-N-(tert-butyl)hydrazine-1-carbothioamide) 1 and 2-(adamantane-1-carbonyl)-N-cyclohexylhydrazine-1-carbothioamide 2, have been synthesized. X-ray analysis was conducted to study the effect of the t-butyl and cyclohexyl moieties on the intermolecular interactions and conformation of the molecules in the solid state. X-ray analysis reveals that compound 1 exhibits folded conformation, whereas compound 2 adopts extended conformation. The Hirshfeld surface analysis indicates that the contributions of the major intercontacts involved in the stabilization of the crystal structures do not change much as a result of the t-butyl and cyclohexyl moieties. However, the presence and absence of these contacts is revealed by the 2D-fingerprint plots. The CLP–Pixel method was used to identify the energetically significant molecular dimers. These dimers are stabilized by different types of intermolecular interactions such as N–H···S, N–H···O, C–H···S, C–H···O, H–H bonding and C–H···π interactions. The strength of these interactions was quantified by using the QTAIM approach. The results suggest that N–H···O interaction is found to be stronger among other interactions. The in vitro assay suggests that both compounds 1 and 2 exhibit urease inhibition potential, and these compounds also display moderate antiproliferative activities. Molecular docking analysis shows the key interaction between urease enzyme and title compounds.
Journal Article