Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
86 result(s) for "arbuscular mycorrhizal (AM) colonization"
Sort by:
Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest
The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi.
Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species
In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits.
Responses of absorptive root and mycorrhizal colonization of Chinese fir (Cunninghamia lanceolata) to varied environmental conditions
Root branching and mycorrhizal symbioses are two major mechanisms for soil resource acquisition by trees. Understanding the relationship between these two mechanisms and their responses to varied environmental conditions is crucial for predicting the responses of foraging strategies of roots to environmental changes. This study was conducted in 11 Chinese fir (Cunninghamia lanceolata) plantations distributed in different environmental conditions in Subtropical China to assess the relationship between root tip traits related to nutrient foraging (branching ratio of 1st-order roots to 2nd-order roots, arbuscular mycorrhizal (AM) colonization) and their environmental variables, including mean annual precipitation (MAP), mean annual temperature (MAT), soil C, soil N, soil P, and soil pH. Root branching was more sensitive to environmental conditions than mycorrhizal symbioses. The branching ratio and AM colonization of Chinese fir were significantly related to several environmental variables. The branching ratios were positively correlated with MAT, but negatively correlated with soil C, soil N, and soil pH (P < 0.05), suggesting that harsh environmental conditions can promote absorptive root branching. To our surprise, the AM colonization of absorptive roots was not as sensitive to environmental factors as branching ratio. However, the AM colonization of absorptive roots was positively correlated with soil pH (P < 0.1), indicating that soil acidity controls mycorrhizal symbioses. Moreover, the branching ratio was significantly negatively correlated with AM colonization (P < 0.05). Our results confirmed that environmental conditions significantly regulate fine root branching and its mycorrhizal symbioses, but with different controlling variables. The negatively correlated relationship of branching ratio and AM colonization shows that environmental factors regulate absorptive root traits in different ways.
Arum-Paris continuum of mycorrhizal symbioses
• A survey of 12 plants colonized by six species of arbuscular mycorrhizal fungi was conducted to explore the diversity of Arum and Paris mycorrhizal structures. • Surveyed root material was sectioned both longitudinally and transversely, double-stained and mycorrhizal structures were identified. A detailed time course experiment using four plant, and four fungal species, was used to investigate the sequential development of hyphae, arbuscules, hyphal coils, arbusculate coils and vesicles. • The survey indicated that there was a continuum of mycorrhizal structures ranging from Arum to Paris, depending upon both the host plant and the fungus. The time course showed that total colonization increased, and that the establishment of the various mycorrhizal structures did not appear to change greatly over time. • It was concluded that identification of fungal structures and their subsequent development into morphological types is not easily defined. Visual inspection of root squashes is not always adequate, especially where transverse sections are needed to determine if longitudinal hyphae are inter or intracellular; this is essential to distinguish intermediate types.
FungalRoot
• Testing of ecological, biogeographical and phylogenetic hypotheses of mycorrhizal traits requires a comprehensive reference dataset about plant mycorrhizal associations. • Here we present a database, FungalRoot, which summarizes publicly available data about vascular plant mycorrhizal type and intensity of root colonization by mycorrhizal fungi, accompanied with rich metadata. We compiled and digitized data about plant mycorrhizal colonization in nine widespread languages. • The present version of the FungalRoot database contains 36 303 species-by-site observations for 14 870 plant species, tripling the previously available compiled information about plant mycorrhizal associations. Based on these data, we provide a recommended list of genuslevel plant mycorrhizal associations, based on the majority of data for species and careful analysis of conflicting data. The majority of ectomycorrhizal and ericoid mycorrhizal plants are trees (92%) and shrubs (85%), respectively. The majority of arbuscular and nonmycorrhizal plant species are herbaceous (50% and 70%, respectively). • Our publicly available database is a powerful resource for mycorrhizal scientists and ecologists. It features possibilities for dynamic updating and addition of data about plant mycorrhizal associations. The new database will promote research on plant and fungal biogeography and evolution, and on links between above- and belowground biodiversity and ecosystem functioning.
Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species
The arbuscular mycorrhizal (AM) symbiosis is key to plant nutrition, and hence is potentially key in sustainable agriculture. Fertilization and other agricultural practices reduce soil AM fungi and root colonization. Such conditions might promote the evolution of low mycorrhizal responsive crops. Therefore, we ask if and how evolution under domestication has altered AM symbioses of crops. We measured the effect of domestication on mycorrhizal responsiveness across 27 crop species and their wild progenitors. Additionally, in a subset of 14 crops, we tested if domestication effects differed under contrasting phosphorus (P) availabilities. The response of AM symbiosis to domestication varied with P availability. On average, wild progenitors benefited from the AM symbiosis irrespective of P availability, while domesticated crops only profited under P-limited conditions. Magnitudes and directions of response were diverse among the 27 crops, and were unrelated to phylogenetic affinities or to the coordinated evolution with fine root traits. Our results indicate disruptions in the efficiency of the AM symbiosis linked to domestication. Under high fertilization, domestication could have altered the regulation of resource trafficking between AM fungi and associated plant hosts. Provided that crops are commonly raised under high fertilization, this result has important implications for sustainable agriculture.
Soil fungal networks moderate density-dependent survival and growth of seedlings
• Pathogenic and mutualistic fungi have contrasting effects on seedling establishment, but it remains unclear whether density-dependent survival and growth are regulated by access to different types of mycorrhizal fungal networks supported by neighbouring adult trees. • Here, we conducted an extensive field survey to test how mycorrhizal and pathogenic fungal colonization of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) seedlings in a subtropical forest respond to density of neighbouring adult trees. In addition, we undertook a hyphal exclusion experiment to explicitly test the role of soil fungal networks in driving density- dependent effects on seedling growth and survival. • Conspecific adult density was a strong predictor for the relative abundance of putative pathogens, which was greater in roots of AM than of ECM seedlings, while mycorrhizal fungal abundance and colonization were not consistently affected by conspecific adult density. Both ECM and AM fungal networks counteracted conspecific density-dependent mortality, but ECM fungi were more effective at weakening the negative effects of high seedling density than AM fungi. • Our findings reveal a critical role of common fungal networks in mitigating negative density- dependent effects of pathogenic fungi on seedling establishment, which provides mechanistic insights into how soil fungal diversity shapes plant community structure in subtropical forests.
Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling
A significant fraction of carbon stored in the Earth's soil moves through arbuscular mycorrhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget are poorly understood. We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We discuss the need to acquire additional data to use our method, and present our new global database holding information on plant species-by-site intensity of root colonization by mycorrhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground biomass carbon (mostly AM). Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact on local and global carbon cycling processes, paving the way towards an improved understanding of the role of mycorrhizas in the Earth's carbon cycle.
Is there an association between root architecture and mycorrhizal growth response?
The symbiosis between arbuscular mycorrhizal (AM) fungi and plants is evolutionarily widespread. The response of plant growth to inoculation by these fungi (mycorrhizal growth response; MGR) is highly variable, ranging from positive to negative. Some of this variation is hypothesized to be associated with root structure and function. Specifically, species with a coarse root architecture, and thus a limited intrinsic capacity to absorb soil nutrients, are expected to derive the greatest growth benefit from inoculation with AM fungi. To test this hypothesis, previously published literature and phylogenetic information were combined in a meta‐analysis to examine the magnitude and direction of relationships among several root architectural traits and MGR. Published studies differed in the magnitude and direction of relationships between root architecture and MGR. However, when combined, the overall relationship between MGR and allocation to roots, root diameter, root hair length and root hair density did not differ significantly from zero. These findings indicate that possessing coarse roots is not necessarily a predictor of plant growth response to AM fungal colonization. Root architecture is therefore unlikely to limit the evolution of variation in MGR.
Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants
Arbuscular mycorrhizal (AM) fungi interconnect plants in common mycorrhizal networks (CMNs) which can amplify competition among neighbors. Amplified competition might result from the fungi supplying mineral nutrients preferentially to hosts that abundantly provide fixed carbon, as suggested by research with organ-cultured roots. We examined whether CMNs supplied 15N preferentially to large, nonshaded, whole plants. We conducted an intraspecific target–neighbor pot experiment with Andropogon gerardii and several AM fungi in intact, severed or prevented CMNs. Neighbors were supplied 15N, and half of the target plants were shaded. Intact CMNs increased target dry weight (DW), intensified competition and increased size inequality. Shading decreased target weight, but shaded plants in intact CMNs had mycorrhizal colonization similar to that of sunlit plants. AM fungi in intact CMNs acquired 15N from the substrate of neighbors and preferentially allocated it to sunlit, large, target plants. Sunlit, intact CMN, target plants acquired as much as 27% of their nitrogen from the vicinity of their neighbors, but shaded targets did not. These results suggest that AM fungi in CMNs preferentially provide mineral nutrients to those conspecific host individuals best able to provide them with fixed carbon or representing the strongest sinks, thereby potentially amplifying asymmetric competition below ground.