Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
259
result(s) for
"atmospheric icing"
Sort by:
An Experimental Study on Adhesion Strength of Offshore Atmospheric Icing on a Wind Turbine Blade Airfoil
2023
When wind turbines work in a cold and humid environment, especially offshore condition, ice accretion on the blade surfaces has a negative effect on the aerodynamic performance. In order to remove the ice from the wind turbine blade, the adhesive characteristics of atmospheric icing on the blade surface should be mastered under various conditions. The objective of this study is to evaluate the effects of offshore atmospheric conditions, including wind speeds, ambient temperatures and, especially, the salt contents on ice adhesion strength for wind turbine blades. The experiments were conducted on a NACA0018 blade airfoil under conditions including an ambient temperature of −3 °C~−15 °C, wind speed of 6 m/s~15 m/s and salt content of 1~20 mg/m3. The results showed that salt content was the most important factor affecting the ice adhesion strength, followed by ambient temperature and wind speed. The interactive effect of wind speed and salt content, ambient temperature and salt content were extremely significant. The research can provide a reference for the anti-icing for offshore wind turbines.
Journal Article
Study of unusual atmospheric icing at Mount Zao, Japan, using the Weather Research and Forecasting model
by
Nygaard, Bjørn Egil Kringlebotn
,
Nishimura, Kouichi
,
Lozowski, Edward Peter
in
Air temperature
,
Atmosphere
,
Atmospheric sciences
2012
A mesoscale atmospheric model, the Weather Research and Forecasting model (WRF), was used for a case study that reconstructs mid‐spring episodes of rime formation at Mt. Zao, Japan. One particularly interesting and rare form of rime was observed. The formations were feathery, opaque aggregates of granular ice 15–30 cm long, called “shrimp tails” in Japanese. Based on an analysis of model‐generated results, we find good quantitative agreement of modeled and observed wind and temperature time series at Jizosancho ropeway station. We identified two icing events (lasting for 36 and 41 h respectively, with surface air temperatures between −6.3° and −0.1°C, relatively constant westerly winds up to 26 m s−1, and maximum cloud liquid water contents (LWC) between 0.72 and 1.05 g m−3). We confirmed that high‐resolution modeling (1.1 km grid spacing) was much more accurate than simulations with coarser grids (10 and 3.3 km). The LWC during the formation period of this rare type of icing was estimated for the first time using the WRF model at Mt. Zao, and it was found to be up to several times higher than values previously used in experimental studies. We found that the joint wind speed‐air temperature distribution for this type of “tail” rime was more similar to that of a hard rime or glaze, than to a soft rime. We explain the formation of “shrimp tails” by wind impact angle and report previously made laboratory results on its effect on the droplet collision efficiency and the density of rime ice. Key Points Rare type of atmospheric in‐cloud icing is modeled with WRF Quantification of unique icing conditions at Mt. Zao, 19‐29 April 2009 Wind impact angle effect on ice loads studied by wind tunnel experiments
Journal Article
Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs
by
Nielsen, Mikkel Cornelius
,
van Beeck, Jeroen
,
Borup, Kasper Trolle
in
Aircraft
,
atmospheric icing
,
Aviation
2021
Atmospheric in-flight icing on unmanned aerial vehicles (UAVs) is a significant hazard. UAVs that are not equipped with ice protection systems are usually limited to operations within visual line of sight or to weather conditions without icing risk. As many military and commercial UAV missions require flights beyond visual line of sight and into adverse weather conditions, energy-efficient ice protection systems are required. In this experimental study, two electro-thermal ice protection systems for fixed-wing UAVs were tested. One system was operated in anti-icing and de-icing mode, and the other system was designed as a parting strip de-icing system. Experiments were conducted in an icing wind tunnel facility for varying icing conditions at low Reynolds numbers. A parametric study over the ice shedding time was used to identify the most energy-efficient operation mode. The results showed that longer intercycle durations led to higher efficiencies and that de-icing with a parting strip was superior compared to anti-icing and de-icing without a parting strip. These findings are relevant for the development of energy-efficient systems in the future.
Journal Article
Evolution of Countermeasures against Atmospheric Icing of Power Lines over the Past Four Decades and Their Applications into Field Operations
2021
The reliability and efficiency of power grids directly contribute to the economic well-being and quality of life of citizens in any country. This reliability depends, among other things, on the power lines that are exposed to different kinds of factors such as lightning, pollution, ice storm, wind, etc. In particular, ice and snow are serious threats in various areas of the world. Under certain conditions, outdoor equipment and hardware may experience various problems: cracking, fatigue, wear, flashover, etc. In actual fact, a variety of countermeasures has been proposed over the past decades and a certain number have been applied by utilities in various countries. This contribution presents the status and current trends of different techniques against atmospheric icing of power lines. A snapshot look at some significant development on this topic over the last four decades is addressed. Engineering problems in utilizing these techniques, their applications, and perspectives are also foreseen. The latest up-to-date review papers on the applications and challenges in terms of PhD thesis, journal articles, conference proceedings, technical reports, and web materials are reported.
Journal Article
Experimental Study on the Icing Dielectric Constant for the Capacitive Icing Sensor
2018
The capacitive method is considered to be a suitable icing-detection technology, but the lack of fundamental parameters restricts the development of icing-detection sensors. In this paper, an artificial icing laboratory, a capacitive sensor, and some simulation conductors have been designed for obtaining the artificial icing samples. Subsequently, the same characteristic values of artificial icing have been measured by an LCR device, under a selected frequency. This research found that the value of the icing dielectric constant closely correlated with its density, internal sublayer, and the test temperature. Finally, a fitting formula has been presented for calculating the relative dielectric constant, which may provide some important reference value for the design of icing-detection sensors.
Journal Article
Study of ice accretion on wind turbine blade profiles using thermal infrared imaging
2021
Atmospheric icing has been recognized as hindrance in proper utilization of good wind resources in cold regions. There is a growing need to better understand the ice accretion physics along wind turbine blades to improve its performance and for optimal design of anti/de-icing system. This article describes a study of ice accretion along wind turbine blade profiles using thermal infrared imaging. Surface temperature distribution along four different blade profile surfaces is studied at different operating conditions. Analysis shows that surface temperature distribution along blade profile surface during ice accretion process is a dynamic process and change in atmospheric conditions and blade geometric characteristics significantly affects the surface temperature and resultant ice accretion. The effect of blade geometry on ice accretion is more prominent in case of wet ice conditions due to low freezing fraction and water run back along blade profile surface.
Journal Article
Ice Accretion on Rotary-Wing Unmanned Aerial Vehicles—A Review Study
by
Virk, Muhammad Shakeel
,
Muhammed, Manaf
in
aerodynamic penalties
,
Aerodynamics
,
Aircraft accidents & safety
2023
Ice accretion on rotary-wing unmanned aerial vehicles (RWUAVs) needs to be studied separately from the fixed-wing UAVs because of the additional flow complexities induced by the propeller rotation. The aerodynamics of rotatory wings are extremely challenging compared to the fixed-wing configuration. Atmospheric icing can be considered a hazard that can plague the operation of UAVs, especially in the Arctic region, as it can impose severe aerodynamic penalties on the performance of propellers. Rotary-wing structures are more prone to ice accretion and ice shedding because of the centrifugal force due to rotational motion, whereby the shedding of the ice can lead to mass imbalance and vibration. The nature of ice accretion on rotatory wings and associated performance degradation need to be understood in detail to aid in the optimum design of rotary-wing UAVs, as well as to develop adequate ice mitigation techniques. Limited research studies are available about icing on rotary wings, and no mature ice mitigation technique exists. Currently, there is an increasing interest in research on these topics. This paper provides a comprehensive review of studies related to icing on RWUAVs, and potential knowledge gaps are also identified.
Journal Article
Ice Accretion on Fixed-Wing Unmanned Aerial Vehicle—A Review Study
by
Virk, Muhammad Shakeel
,
Muhammed, Manaf
in
aerodynamic penalties
,
Aerodynamic stability
,
Aerodynamics
2022
Ice accretion on commercial aircraft operating at high Reynolds numbers has been extensively studied in the literature, but a direct transformation of these results to an Unmanned Aerial Vehicle (UAV) operating at low Reynolds numbers is not straightforward. Changes in Reynolds number have a significant impact on the ice accretion physics. Previously, only a few researchers worked in this area, but it is now gaining more attention due to the increasing applications of UAVs in the modern world. As a result, an attempt is made to review existing scientific knowledge and identify the knowledge gaps in this field of research. Ice accretion can deteriorate the aerodynamic performance, structural integrity, and aircraft stability, necessitating optimal ice mitigation techniques. This paper provides a comprehensive review of ice accretion on fixed-wing UAVs. It includes various methodologies for studying and comprehending the physics of ice accretion on UAVs. The impact of various environmental and geometric factors on ice accretion physics is reviewed, and knowledge gaps are identified. The pros and cons of various ice detection and mitigation techniques developed for UAVs are also discussed.
Journal Article
Improving the representation of supercooled liquid water in the HARMONIE-AROME weather forecast model
by
Thompson, Gregory
,
Engdahl, Bjørg Jenny Kokkvoll
,
Bengtsson, Lisa
in
Arctic zone
,
atmospheric icing forecast
,
Climate
2020
A realistic representation of mixed-phase clouds in weather and climate models is essential to accurately simulate the model's radiative balance and water cycle. In addition, it is important for providing downstream applications with physically realistic model data for computation of, for instance, atmospheric icing on societal infrastructure and aircraft. An important quantity for forecasts of atmospheric icing is to model accurately supercooled liquid water (SLW). In this study, we implement elements from the Thompson cloud microphysics scheme into the numerical weather prediction model HARMONIE-AROME, with the aim to improve its ability to predict SLW. We conduct an idealised process-level evaluation of microphysical processes, and analyse the water phase budget of clouds and precipitation to compare the modified and original schemes, and also identify the processes with the most impact to form SLW. Two idealised cases representing orographic lift and freezing drizzle, both known to generate significant amounts of SLW, are setup in a 1 D column version of HARMONIE-AROME. The experiments show that the amount of SLW is largely sensitive to the ice initiation processes, snow and graupel collection of cloud water, and the rain size distribution. There is a doubling of the cloud water maximum mixing ratio, in addition to a prolonged existence of SLW, with the modified scheme compared with the original scheme. The spatial and temporal extent of cloud ice and snow are reduced, due to stricter conditions for ice nucleation. The findings are important as the HARMONIE-AROME models is used for operational forecasting in many countries in northern Europe having a colder climate, as well as for climate assessments over the Arctic region.
Journal Article
Detailed atmospheric ice accretion surface measurement using micro‐computed tomography
2020
Surfaces exposed to atmospheric cold temperature and humid environments are prone to ice accretion. Airplanes, electrical power transmission cables, and wind turbines are typical examples for which icing has to be considered. The measurement of the resulting ice shapes is a challenging process. While macroscopic characteristics of the ice geometry can be observed using photography and optical scanning techniques, microscopic measurements are difficult to conduct because grooved surface partially occludes the geometry of chasms. To overcome this optical inaccessibility, we propose a method to carry out detailed high‐resolution measurements of the accretion surface with micro‐computed tomography. This approach provides a unique visualization of the empty spaces in the feather region. The information obtained by this technique can improve the understanding of ice accretion physics and its computational modeling. The shape of atmospheric ice accretion is highly complex. Macroscopic features can be observed using photography but microscopic details remain challenging to measure. Mold and cast of the ice produced in an icing wind tunnel were scanned using micro‐computed tomography. High‐resolution reconstruction of the accretion allows seeing occluded zones between feather structures.
Journal Article