Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
16,076
result(s) for
"bacterial species"
Sort by:
Combined remineralizing effect of arginine and fluoride on artificially demineralized human primary dentin evaluated using quantitative light induced fluorescence
by
Ashwini, K. P.
,
Prasad, Jeessica
,
Shanbhog, Raghavendra
in
Arginine
,
Biofilms
,
Demineralization
2023
ABSTRACT
Introduction:
One the most common chronic dental diseases affecting children is dental caries. Dentin caries is a condition in which caries has progressed to the dentin and caused a significant depth of lesion. Clinical studies have revealed that an increased caries risk is associated with a decreased alkali-producing capacity of the microbial populations colonizing the oral cavity of adults, which arginine somewhat compensates for.
Aims:
To evaluate the remineralizing efficacy of fluoridated toothpaste, with fluoride-arginine containing toothpaste on demineralized dentin of primary teeth using quantitative light-induced fluorescence™.
Materials and Methods:
Forty-five primary molars were decoronated and sectioned to prepare dentin specimens and mounted in an acrylic block in a uniform manner using a customized acrylic jig. Samples were randomized into three groups, were subjected to demineralization to create artificial dentin caries lesion. Following this, all the 45 samples were subjected to multispecies bacterial pH cycling for 21 days. All the specimens were evaluated for postdemineralization, pH cycling day 7, 14, and 21 on QLF™.
Results:
On day 21, maximum fluorescence gain was observed by the positive control group followed by the arginine and negative control group. The variation observed between positive control and arginine group was found to be statistically significant.
Conclusions:
An in vitro development of artificial caries such as demineralized lesion on primary dentin sample using plaque biofilm was observed successfully under QLF after 72 h. Arginine in combination with fluoride showed almost similar remineralization of demineralized primary dentin compared to fluoride alone after 21 days of multispecies bacterial pH cycling.
Journal Article
The bacterial species definition in the genomic era
by
Ramette, Alban
,
Konstantinidis, Konstantinos T
,
Tiedje, James M
in
Bacteria
,
Bacteria - classification
,
Bacteria - genetics
2006
The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction.
Journal Article
Genomics and pathotypes of the many faces of Escherichia coli
by
de Been, Mark
,
McNally, Alan
,
Poolman, Jan
in
Antibiotic resistance
,
Commensalism
,
Drug resistance in microorganisms
2022
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli’s infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
A schematic characterization of the disease manifestations, genomic flexibility, population dynamics, and vaccine targets of Escherichia coli, a multi-faceted bacterium with pathogenic potential throughout the entire species.
Journal Article
Pseudomonas genomes: diverse and adaptable
by
Winstanley, Craig
,
Jackson, Robert W.
,
Silby, Mark W.
in
Adaptability
,
Adaptation
,
Adaptation, Physiological - genetics
2011
Abstract
Members of the genus Pseudomonas inhabit a wide variety of environments, which is reflected in their versatile metabolic capacity and broad potential for adaptation to fluctuating environmental conditions. Here, we examine and compare the genomes of a range of Pseudomonas spp. encompassing plant, insect and human pathogens, and environmental saprophytes. In addition to a large number of allelic differences of common genes that confer regulatory and metabolic flexibility, genome analysis suggests that many other factors contribute to the diversity and adaptability of Pseudomonas spp. Horizontal gene transfer has impacted the capability of pathogenic Pseudomonas spp. in terms of disease severity (Pseudomonas aeruginosa) and specificity (Pseudomonas syringae). Genome rearrangements likely contribute to adaptation, and a considerable complement of unique genes undoubtedly contributes to strain- and species-specific activities by as yet unknown mechanisms. Because of the lack of conserved phenotypic differences, the classification of the genus has long been contentious. DNA hybridization and genome-based analyses show close relationships among members of P. aeruginosa, but that isolates within the Pseudomonas fluorescens and P. syringae species are less closely related and may constitute different species. Collectively, genome sequences of Pseudomonas spp. have provided insights into pathogenesis and the genetic basis for diversity and adaptation.
Journal Article
Rapid Radiations Outweigh Reticulations During the Evolution of a 750-Million-Year-Old Lineage of Cyanobacteria
by
Haughland, Diane L
,
Dvořák, Petr
,
Garfias-Gallegos, Diego
in
anomaly zone
,
average nucleotide identity
,
bacterial species
2025
Species are a fundamental unit of biodiversity. Yet, the existence of clear species boundaries among bacteria has long been a subject of debate. Here, we studied species boundaries in the context of the phylogenetic history of Nostoc, a widespread genus of photoautotrophic and nitrogen-fixing cyanobacteria that includes many lineages that form symbiotic associations with plants (e.g. cycads and bryophytes) and fungi (e.g. cyanolichens). We found that the evolution of Nostoc was characterized by eight rapid radiations, many of which were associated with major events in the evolution of plants. In addition, incomplete lineage sorting associated with these rapid radiations outweighed reticulations during Nostoc evolution. We then show that the pattern of diversification of Nostoc shapes the distribution of average nucleotide identities (ANIs) into a complex mosaic, wherein some closely related clades are clearly isolated from each other by gaps in genomic similarity, while others form a continuum where genomic species boundaries are expected. Nevertheless, recently diverged Nostoc lineages often form cohesive clades that are maintained by within-clade gene flow. Boundaries to homologous recombination between these cohesive clades persist even when the potential for gene flow is high, i.e. when closely related clades of Nostoc co-occur or are locally found in symbiotic associations with the same lichen-forming fungal species. Our results demonstrate that rapid radiations are major contributors to the complex speciation history of Nostoc. This underscores the need to consider evolutionary information beyond thresholds of genomic similarity to delimit biologically meaningful units of biodiversity for bacteria.
Journal Article
Consistent Metagenome-Derived Metrics Verify and Delineate Bacterial Species Boundaries
by
Diamond, Spencer
,
Lavy, Adi
,
Matheus Carnevali, Paula B.
in
Bacteria
,
bacterial species
,
BASIC BIOLOGICAL SCIENCES
2020
There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics. Longstanding questions relate to the existence of naturally distinct bacterial species and genetic approaches to distinguish them. Bacterial genomes in public databases form distinct groups, but these databases are subject to isolation and deposition biases. To avoid these biases, we compared 5,203 bacterial genomes from 1,457 environmental metagenomic samples to test for distinct clouds of diversity and evaluated metrics that could be used to define the species boundary. Bacterial genomes from the human gut, soil, and the ocean all exhibited gaps in whole-genome average nucleotide identities (ANI) near the previously suggested species threshold of 95% ANI. While genome-wide ratios of nonsynonymous and synonymous nucleotide differences ( dN / dS ) decrease until ANI values approach ∼98%, two methods for estimating homologous recombination approached zero at ∼95% ANI, supporting breakdown of recombination due to sequence divergence as a species-forming force. We evaluated 107 genome-based metrics for their ability to distinguish species when full genomes are not recovered. Full-length 16S rRNA genes were least useful, in part because they were underrecovered from metagenomes. However, many ribosomal proteins displayed both high metagenomic recoverability and species discrimination power. Taken together, our results verify the existence of sequence-discrete microbial species in metagenome-derived genomes and highlight the usefulness of ribosomal genes for gene-level species discrimination. IMPORTANCE There is controversy about whether bacterial diversity is clustered into distinct species groups or exists as a continuum. To address this issue, we analyzed bacterial genome databases and reports from several previous large-scale environment studies and identified clear discrete groups of species-level bacterial diversity in all cases. Genetic analysis further revealed that quasi-sexual reproduction via horizontal gene transfer is likely a key evolutionary force that maintains bacterial species integrity. We next benchmarked over 100 metrics to distinguish these bacterial species from each other and identified several genes encoding ribosomal proteins with high species discrimination power. Overall, the results from this study provide best practices for bacterial species delineation based on genome content and insight into the nature of bacterial species population genetics.
Journal Article
The Bacterial Degradation of Lignin—A Review
2023
Microbial degradation of lignin, a natural complex biopolymer, a renewable raw material with a wide range of applications, has been mainly directed at fungal systems, nevertheless, recent studies have proposed the bacterial role in lignin degradation and modification since bacteria possess remarkable environmental adaptability, and various production of enzymes and biochemistry. An occurrence of a high proportion of lignin-degrading genes has been confirmed in actinobacteria and proteobacteria classes by bioinformatics analysis, which points to the probability of undiscovered pathways and enzymes. Because of that, bacterial lignin decomposition might be substantially different from fungal lignin decomposition. Bacteria capable of lignin modification and degradation belong to actinomycetes, some Firmicutes, α-proteobacteria, and γ-proteobacteria. The enzymes responsible for lignin degradation are lignin peroxidase, manganese-dependent peroxidase, versatile peroxidase, dye-decolourizing peroxidase, and laccases. One of the main lignin producers is the pulp and paper manufacturing industry. Lignolytic microorganisms have been identified from diverse habitats, such as in plants, soil, wood, and the gut. Bacterial strains Bacillus, Rhodococcus, Sterptomyces, and Pseudomonas have been reported to have lignin decomposition ability. This review aims to describe the role of bacteria in lignin degradation, bacterial species, and bacterial enzymes included in lignin degradation. Several reports about bacterial species involved in lignin degradation are also highlighted, and the current state of the knowledge on the degradation of lignin from the pulp and paper manufacturing industry are reported.
Journal Article
The bacterial species dilemma and the genomic–phylogenetic species concept
2006
The number of species of Bacteria and Archaea (ca 5000) is surprisingly small considering their early evolution, genetic diversity and residence in all ecosystems. The bacterial species definition accounts in part for the small number of named species. The primary procedures required to identify new species of Bacteria and Archaea are DNA-DNA hybridization and phenotypic characterization. Recently, 16S rRNA gene sequencing and phylogenetic analysis have been applied to bacterial taxonomy. Although 16S phylogeny is arguably excellent for classification of Bacteria and Archaea from the Domain level down to the family or genus, it lacks resolution below that level. Newer approaches, including multilocus sequence analysis, and genome sequence and microarray analyses, promise to provide necessary information to better understand bacterial speciation. Indeed, recent data using these approaches, while meagre, support the view that speciation processes may occur at the subspecies level within ecological niches (ecovars) and owing to biogeography (geovars). A major dilemma for bacterial taxonomists is how to incorporate this new information into the present hierarchical system for classification of Bacteria and Archaea without causing undesirable confusion and contention. This author proposes the genomic-phylogenetic species concept (GPSC) for the taxonomy of prokaryotes. The aim is twofold. First, the GPSC would provide a conceptual and testable framework for bacterial taxonomy. Second, the GPSC would replace the burdensome requirement for DNA hybridization presently needed to describe new species. Furthermore, the GPSC is consistent with the present treatment at higher taxonomic levels.
Journal Article
Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum
by
Damm, Peter
,
Heinsen, Femke-Anouska
,
Franke, Andre
in
Actinobacteria - genetics
,
Actinobacteria - isolation & purification
,
Adult
2018
Background
Imbalances of gut microbiota composition are linked to a range of metabolic perturbations. In the present study, we examined the gut microbiota of women with gestational diabetes mellitus (GDM) and normoglycaemic pregnant women in late pregnancy and about 8 months postpartum.
Methods
Gut microbiota profiles of women with GDM (
n
= 50) and healthy (
n
= 157) pregnant women in the third trimester and 8 months postpartum were assessed by 16S rRNA gene amplicon sequencing of the V1-V2 region. Insulin and glucose homeostasis were evaluated by a 75 g 2-h oral glucose tolerance test during and after pregnancy.
Results
Gut microbiota of women with GDM was aberrant at multiple levels, including phylum and genus levels, compared with normoglycaemic pregnant women.
Actinobacteria
at phylum level and
Collinsella
,
Rothia
and
Desulfovibrio
at genus level had a higher abundance in the GDM cohort. Difference in abundance of 17 species-level operational taxonomic units (OTUs) during pregnancy was associated with GDM. After adjustment for pre-pregnancy body mass index (BMI), 5 of the 17 OTUs showed differential abundance in the GDM cohort compared with the normoglycaemic pregnant women with enrichment of species annotated to
Faecalibacterium
and
Anaerotruncus
and depletion of species annotated to
Clostridium
(sensu stricto) and to
Veillonella
. OTUs assigned to
Akkermansia
were associated with lower insulin sensitivity while
Christensenella
OTUs were associated with higher fasting plasma glucose concentration. OTU richness and Shannon index decreased from late pregnancy to postpartum regardless of metabolic status. About 8 months after delivery, the microbiota of women with previous GDM was still characterised by an aberrant composition. Thirteen OTUs were differentially abundant in women with previous GDM compared with women with previous normoglycaemic pregnancy.
Conclusion
GDM diagnosed in the third trimester of pregnancy is associated with a disrupted gut microbiota composition compared with normoglycaemic pregnant women, and 8 months after pregnancy, differences in the gut microbiota signatures are still detectable. The gut microbiota composition of women with GDM, both during and after pregnancy, resembles the aberrant microbiota composition reported in non-pregnant individuals with type 2 diabetes and associated intermediary metabolic traits.
Journal Article
Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives
2018
Growing evidence demonstrates that bacterial species diversity is substantial, and many of these species are pathogenic in some contexts or hosts. At the same time, laboratories and museums have collected valuable animal tissue and ectoparasite samples that may contain substantial novel information on bacterial prevalence and diversity. However, the identification of bacterial species is challenging, partly due to the difficulty in culturing many microbes and the reliance on molecular data. Although the genomics revolution will surely add to our knowledge of bacterial systematics, these approaches are not accessible to all researchers and rely predominantly on cultured isolates. Thus, there is a need for comprehensive molecular analyses capable of accurately genotyping bacteria from animal tissues or ectoparasites using common methods that will facilitate large-scale comparisons of species diversity and prevalence. To illustrate the challenges of genotyping bacteria, we focus on the genus Bartonella, vector-borne bacteria common in mammals. We highlight the value and limitations of commonly used techniques for genotyping bartonellae and make recommendations for researchers interested in studying the diversity of these bacteria in various samples. Our recommendations could be applicable to many bacterial taxa (with some modifications) and could lead to a more complete understanding of bacterial species diversity.
Journal Article