Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,463 result(s) for "base editing"
Sort by:
Mitochondrial DNA editing in potato through mitoTALEN and mitoTALECD: molecular characterization and stability of editing events
Background The aim of this study was to evaluate and characterize the mutations induced by two TALE-based approaches, double-strand break (DSB) induction by the Fok I nuclease (mitoTALEN) and targeted base editing by the DddA cytidine deaminase (mitoTALECD), to edit, for the first time, the mitochondrial genome of potato, a vegetatively propagated crop. The two methods were used to knock out the same mitochondrial target sequence ( orf125 ). Results Targeted chondriome deletions of different sizes (236–1066 bp) were induced by mitoTALEN due to DSB repair through ectopic homologous recombination of short direct repeats (11–12 bp) present in the target region. Furthermore, in one case, the induced DSB and subsequent repair resulted in the amplification of an already present substoichiometric molecule showing a 4288 bp deletion spanning the target sequence. With the mitoTALECD approach, both nonsense and missense mutations could be induced by base substitution. The deletions and single nucleotide mutations were either homoplasmic or heteroplasmic. The former were stably inherited in vegetative offspring. Conclusions Both editing approaches allowed us to obtain plants with precisely modified mitochondrial genomes at high frequency. The use of the same plant genotype and mtDNA region allowed us to compare the two methods for efficiency, accuracy, type of modifications induced and stability after vegetative propagation.
Correction of Fanconi Anemia Mutations Using Digital Genome Engineering
Fanconi anemia (FA) is a rare genetic disease in which genes essential for DNA repair are mutated. Both the interstrand crosslink (ICL) and double-strand break (DSB) repair pathways are disrupted in FA, leading to patient bone marrow failure (BMF) and cancer predisposition. The only curative therapy for the hematological manifestations of FA is an allogeneic hematopoietic cell transplant (HCT); however, many (>70%) patients lack a suitable human leukocyte antigen (HLA)-matched donor, often resulting in increased rates of graft-versus-host disease (GvHD) and, potentially, the exacerbation of cancer risk. Successful engraftment of gene-corrected autologous hematopoietic stem cells (HSC) circumvents the need for an allogeneic HCT and has been achieved in other genetic diseases using targeted nucleases to induce site specific DSBs and the correction of mutated genes through homology-directed repair (HDR). However, this process is extremely inefficient in FA cells, as they are inherently deficient in DNA repair. Here, we demonstrate the correction of FANCA mutations in primary patient cells using ‘digital’ genome editing with the cytosine and adenine base editors (BEs). These Cas9-based tools allow for C:G > T:A or A:T > C:G base transitions without the induction of a toxic DSB or the need for a DNA donor molecule. These genetic corrections or conservative codon substitution strategies lead to phenotypic rescue as illustrated by a resistance to the alkylating crosslinking agent Mitomycin C (MMC). Further, FANCA protein expression was restored, and an intact FA pathway was demonstrated by downstream FANCD2 monoubiquitination induction. This BE digital correction strategy will enable the use of gene-corrected FA patient hematopoietic stem and progenitor cells (HSPCs) for autologous HCT, obviating the risks associated with allogeneic HCT and DSB induction during autologous HSC gene therapy.
KOnezumi-AID: Automation Software for Efficient Multiplex Gene Knockout Using Target-AID
With the groundbreaking advancements in genome editing technologies, particularly CRISPR-Cas9, creating knockout mutants has become highly efficient. However, the CRISPR-Cas9 system introduces DNA double-strand breaks, increasing the risk of chromosomal rearrangements and posing a major obstacle to simultaneous multiple gene knockout. Base-editing systems, such as Target-AID, are safe alternatives for precise base modifications without requiring DNA double-strand breaks, serving as promising solutions for existing challenges. Nevertheless, the absence of adequate tools to support Target-AID-based gene knockout highlights the need for a comprehensive system to design guide RNAs (gRNAs) for the simultaneous knockout of multiple genes. Here, we aimed to develop KOnezumi-AID, a command-line tool for gRNA design for Target-AID-mediated genome editing. KOnezumi-AID facilitates gene knockout by inducing the premature termination codons or promoting exon skipping, thereby generating experiment-ready gRNA designs for mouse and human genomes. Additionally, KOnezumi-AID exhibits batch processing capacity, enabling rapid and precise gRNA design for large-scale genome editing, including CRISPR screening. In summary, KOnezumi-AID is an efficient and user-friendly tool for gRNA design, streamlining genome editing workflows and advancing gene knockout research.
New advances in CRISPR/Cas-mediated precise gene-editing techniques
Over the past decade, CRISPR/Cas-based gene editing has become a powerful tool for generating mutations in a variety of model organisms, from Escherichia coli to zebrafish, rodents and large mammals. CRISPR/Cas-based gene editing effectively generates insertions or deletions (indels), which allow for rapid gene disruption. However, a large proportion of human genetic diseases are caused by single-base-pair substitutions, which result in more subtle alterations to protein function, and which require more complex and precise editing to recreate in model systems. Precise genome editing (PGE) methods, however, typically have efficiencies of less than a tenth of those that generate less-specific indels, and so there has been a great deal of effort to improve PGE efficiency. Such optimisations include optimal guide RNA and mutation-bearing donor DNA template design, modulation of DNA repair pathways that underpin how edits result from Cas-induced cuts, and the development of Cas9 fusion proteins that introduce edits via alternative mechanisms. In this Review, we provide an overview of the recent progress in optimising PGE methods and their potential for generating models of human genetic disease.
Overview of EFSA and European national authorities’ scientific opinions on the risk assessment of plants developed through New Genomic Techniques
The European Commission requested EFSA to provide an overview on the risk assessment of plants developed through new genomic techniques (NGTs), taking into account its previous scientific opinions, its ongoing work on the topic as well as opinions published by competent authorities and national institutions since 2012, where available. In this report, NGTs are defined as techniques capable to change the genetic material of an organism and have emerged or developed since the adoption of the 2001 genetically modified organism (GMO) legislation. EFSA considered 16 scientific opinions issued by European member states (‘MS opinions’) as well as three EFSA GMO Panel scientific opinions on NGTs. A procurement to evaluate and summarise the MS opinions was conducted. Relevant information on the description of each NGT and information on the risk assessment of plants developed through one or a combination of the defined NGTs was extracted and summarised. The baseline for the types and nature of NGTs to be included in this report was defined based on the JRC, 2011 report on new plant breeding techniques as well as on the Explanatory Note on New Techniques in Agricultural Biotechnology from the European Commissioner for Health and Food Safety (EC‐SAM, 2017) for some more recently developed NGTs, taking into account the NGT definition provided by the European Commission for this mandate. EFSA was not requested to develop new opinions on plants developed through specific NGTs, and thus, no critical appraisal of the reviewed scientific opinions was carried out. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2021.EN-1973/full
Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives
CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.
Expanding the base editing scope in rice by using Cas9 variants
Summary Base editing is a novel genome editing strategy that enables irreversible base conversion at target loci without the need for double stranded break induction or homology‐directed repair. Here, we developed new adenine and cytosine base editors with engineered SpCas9 and SaCas9 variants that substantially expand the targetable sites in the rice genome. These new base editors can edit endogenous genes in the rice genome with various efficiencies. Moreover, we show that adenine and cytosine base editing can be simultaneously executed in rice. The new base editors described here will be useful in rice functional genomics research and will advance precision molecular breeding in crops.
CRISPR-Cas9 DNA Base-Editing and Prime-Editing
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants
Abiotic stresses, including drought, salinity, cold, heat, and heavy metals, extensively reducing global agricultural production. Traditional breeding approaches and transgenic technology have been widely used to mitigate the risks of these environmental stresses. The discovery of engineered nucleases as genetic scissors to carry out precise manipulation in crop stress-responsive genes and associated molecular network has paved the way for sustainable management of abiotic stress conditions. In this context, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas)-based gene-editing tool has revolutionized due to its simplicity, accessibility, adaptability, flexibility, and wide applicability. This system has great potential to build up crop varieties with enhanced tolerance against abiotic stresses. In this review, we summarize the latest findings on understanding the mechanism of abiotic stress response in plants and the application of CRISPR/Cas-mediated gene-editing system towards enhanced tolerance to a multitude of stresses including drought, salinity, cold, heat, and heavy metals. We provide mechanistic insights on the CRISPR/Cas9-based genome editing technology. We also discuss applications of evolving genome editing techniques such as prime editing and base editing, mutant library production, transgene free and multiplexing to rapidly deliver modern crop cultivars adapted to abiotic stress conditions.
Web-based design and analysis tools for CRISPR base editing
Background As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed. Results We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (< 1 GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer /, respectively. Conclusion We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.