Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
532 result(s) for "basolateral amygdala"
Sort by:
The role of the basolateral amygdala and infralimbic cortex in (re)learning extinction
The basolateral amygdala complex (BLA) and infralimbic region of the prefrontal cortex (IL) play distinct roles in the extinction of Pavlovian conditioned fear in laboratory rodents. In the past decade, research in our laboratory has examined the roles of these brain regions in the re-extinction of conditioned fear: i.e., extinction of fear that is restored through re-conditioning of the conditioned stimulus (CS) or changes in the physical and temporal context of extinction training (i.e., extinction of renewed or spontaneously recovered fear). This paper reviews this research. It has revealed two major findings. First, in contrast to the acquisition of fear extinction, which usually requires neuronal activity in the BLA but not IL, the acquisition of fear re-extinction requires neuronal activity in the IL but can occur independently of neuronal activity in the BLA. Second, the role of the IL in fear extinction is determined by the training history of the CS: i.e., if the CS was novel prior to its fear conditioning (i.e., it had not been trained), the acquisition of fear extinction does not require the IL; if, however, the prior training of the CS included a series of CS-alone exposures (e.g., if the CS had been pre-exposed), the acquisition of fear extinction was facilitated by pharmacological stimulation of the IL. Together, these results were taken to imply that a memory of CS-alone exposures is stored in the IL, survives fear conditioning of the CS, and can be retrieved and strengthened during extinction or re-extinction of that CS (regardless of whether the extinction is first- or second-learned). Hence, under these circumstances, the initial extinction of fear to the CS can be facilitated by pharmacological stimulation of the IL, and re-extinction of fear to the CS can occur in the absence of a functioning BLA.
Reorganization of Basolateral Amygdala-Subiculum Circuitry in Mouse Epilepsy Model
In this study, we investigated the reorganized basolateral amygdala (BLA)-subiculum pathway in a status epilepticus (SE) mouse model with epileptic episodes induced by pilocarpine. We have previously observed a dramatic loss of neurons in the CA1-3 fields of the hippocampus in epileptic mice. Herein, we observed a 43-57% reduction in the number of neurons in the BLA of epileptic mice. However, injection of an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L) into the BLA indicated 25.63% increase in the number of PHA-L-immunopositive terminal-like structures in the ventral subiculum (v-Sub) of epileptic mice as compared to control mice. These data suggest that the projections from the basal nucleus at BLA to the vSub in epileptic mice are resistant to epilepsy-induced damage. Consequently, these epileptic mice exhibit partially impairment but not total loss of context-dependent fear memory. Epileptic mice also show increased c-Fos expression in the BLA and vSub when subjected to contextual memory test, suggesting the participation of these two brain areas in foot shock-dependent fear conditioning. These results indicate the presence of functional neural connections between the BLA-vSub regions that participate in learning and memory in epileptic mice.
Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior
Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.
Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway’s Role on Schizophrenia’s Cognitive Impairments: A Multimodal Study in Patients and Mouse Models
Background and Hypothesis This study investigated the role of the medial prefrontal cortex (mPFC)-basolateral amygdala (BLA) pathway in schizophrenia (SCZ)-related cognitive impairments using various techniques. Study Design This study utilized clinical scales, magnetic resonance imaging, single-cell RNA sequencing, and optogenetics to investigate the mPFC-BLA pathway in SCZ patients. In the mouse model, 6-week-old methylazoxymethanol acetate-induced mice demonstrated significant cognitive deficits, which were addressed through stereotaxic injections of an adeno-associated viral vector to unveil the neural connection between the mPFC and BLA. Study Results Significant disparities in brain volume and neural activity, particularly in the dorsolateral prefrontal cortex (DLPFC) and BLA regions, were found between SCZ patients and healthy controls. Additionally, we observed correlations indicating that reduced volumes of the DLPFC and BLA were associated with lower cognitive function scores. Activation of the mPFC-BLA pathway notably improved cognitive performance in the SCZ model mice, with the targeting of excitatory or inhibitory neurons alone failing to replicate this effect. Single-cell transcriptomic profiling revealed gene expression differences in excitatory and inhibitory neurons in the BLA of SCZ model mice. Notably, genes differentially expressed in the BLA of these model mice were also found in the blood exosomes of SCZ patients. Conclusions Our research provides a comprehensive understanding of the role of the PFC-BLA pathway in SCZ, underscoring its significance in cognitive impairment and offering novel diagnostic and therapeutic avenues. Additionally, our research highlights the potential of blood exosomal mRNAs as noninvasive biomarkers for SCZ diagnosis, underscoring the clinical feasibility and utility of this method.
Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect
The basolateral amygdala (BLA) and ventral hippocampal CA1 (vCA1) are cellularly and functionally diverse along their anterior–posterior and superficial-deep axes. Here, we find that anterior BLA (aBLA) and posterior BLA (pBLA) innervate deep-layer calbindin1-negative (Calb1−) and superficial-layer calbindin1-positive neurons (Calb1+) in vCA1, respectively. Photostimulation of pBLA–vCA1 inputs has an anxiolytic effect in mice, promoting approach behaviours during conflict exploratory tasks. By contrast, stimulating aBLA–vCA1 inputs induces anxiety-like behaviour resulting in fewer approaches. During conflict stages of the elevated plus maze task vCA1 Calb1+ neurons are preferentially activated at the open-to-closed arm transition, and photostimulation of vCA1 Calb1+ neurons at decision-making zones promotes approach with fewer retreats. In the APP/PS1 mouse model of Alzheimer’s disease, which shows anxiety-like behaviour, photostimulating the pBLA–vCA1 Calb1+ circuit ameliorates the anxiety in a Calb1-dependent manner. These findings suggest the pBLA–vCA1 Calb1+ circuit from heterogeneous BLA–vCA1 connections drives approach behaviour to reduce anxiety-like behaviour. Projections from the anterior and posterior basolateral amygdala (pBLA) to the ventral hippocampus CA1 (vCA1) are heterogenous. Here the authors show that activating the pathway from pBLA to vCA1 calbindin 1 positive neurons has an anxiolytic effect in approach-avoidance tasks in mice.
Altered Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes in Posttraumatic Stress Disorder
The amygdala is a major structure that orchestrates defensive reactions to environmental threats and is implicated in hypervigilance and symptoms of heightened arousal in posttraumatic stress disorder (PTSD). The basolateral and centromedial amygdala (CMA) complexes are functionally heterogeneous, with distinct roles in learning and expressing fear behaviors. PTSD differences in amygdala-complex function and functional connectivity with cortical and subcortical structures remain unclear. Recent military veterans with PTSD (n=20) and matched trauma-exposed controls (n=22) underwent a resting-state fMRI scan to measure task-free synchronous blood-oxygen level dependent activity. Whole-brain voxel-wise functional connectivity of basolateral and CMA seeds was compared between groups. The PTSD group had stronger functional connectivity of the basolateral amygdala (BLA) complex with the pregenual anterior cingulate cortex (ACC), dorsomedial prefrontal cortex, and dorsal ACC than the trauma-exposed control group (p<0.05; corrected). The trauma-exposed control group had stronger functional connectivity of the BLA complex with the left inferior frontal gyrus than the PTSD group (p<0.05; corrected). The CMA complex lacked connectivity differences between groups. We found PTSD modulates BLA complex connectivity with prefrontal cortical targets implicated in cognitive control of emotional information, which are central to explanations of core PTSD symptoms. PTSD differences in resting-state connectivity of BLA complex could be biasing processes in target regions that support behaviors central to prevailing laboratory models of PTSD such as associative fear learning. Further research is needed to investigate how differences in functional connectivity of amygdala complexes affect target regions that govern behavior, cognition, and affect in PTSD.
Amygdala-cortical collaboration in reward learning and decision making
Adaptive reward-related decision making requires accurate prospective consideration of the specific outcome of each option and its current desirability. These mental simulations are informed by stored memories of the associative relationships that exist within an environment. In this review, I discuss recent investigations of the function of circuitry between the basolateral amygdala (BLA) and lateral (lOFC) and medial (mOFC) orbitofrontal cortex in the learning and use of associative reward memories. I draw conclusions from data collected using sophisticated behavioral approaches to diagnose the content of appetitive memory in combination with modern circuit dissection tools. I propose that, via their direct bidirectional connections, the BLA and OFC collaborate to help us encode detailed, outcome-specific, state-dependent reward memories and to use those memories to enable the predictions and inferences that support adaptive decision making. Whereas lOFC→BLA projections mediate the encoding of outcome-specific reward memories, mOFC→BLA projections regulate the ability to use these memories to inform reward pursuit decisions. BLA projections to lOFC and mOFC both contribute to using reward memories to guide decision making. The BLA→lOFC pathway mediates the ability to represent the identity of a specific predicted reward and the BLA→mOFC pathway facilitates understanding of the value of predicted events. Thus, I outline a neuronal circuit architecture for reward learning and decision making and provide new testable hypotheses as well as implications for both adaptive and maladaptive decision making.
Breakdown of utilitarian moral judgement after basolateral amygdala damage
Most of us would regard killing another person as morally wrong, but when the death of one saves multiple others, it can be morally permitted. According to a prominent computational dual-systems framework, in these life-and-death dilemmas, deontological (nonsacrificial) moral judgments stem from a model-free algorithm that emphasizes the intrinsic value of the sacrificial action, while utilitarian (sacrificial) moral judgments are derived from a model-based algorithm that emphasizes the outcome of the sacrificial action. Rodent decision-making research suggests that the model-based algorithm depends on the basolateral amygdala (BLA), but these findings have not yet been translated to human moral decision-making. Here, in five humans with selective, bilateral BLA damage, we show a breakdown of utilitarian sacrificial moral judgments, pointing at deficient model-based moral decision-making. Across an established set of moral dilemmas, healthy controls frequently sacrifice one person to save numerous others, but BLA-damaged humans withhold such sacrificial judgments even at the cost of thousands of lives. Our translational research confirms a neurocomputational hypothesis drawn from rodent decision-making research by indicating that the model-based algorithm which underlies outcome-based, utilitarian moral judgements in humans critically depends on the BLA.
Electroacupuncture Alleviates Anxiety-Like Behaviors Induced by Chronic Neuropathic Pain via Regulating Different Dopamine Receptors of the Basolateral Amygdala
Chronic pain, such as neuropathic pain, causes anxiety and other negative emotions, which aggravates the pain sensation and increases the risk of chronic pain over time. Dopamine receptor D1 (DRD1) and dopamine receptor D2 (DRD2) in the basolateral amygdala (BLA) have been implicated in mediating anxiety-related behaviors, but their potential roles in the BLA in neuropathic pain-induced anxiety have not been examined. Electroacupuncture (EA) is commonly used to treat chronic pain and emotional disorders, but it is still unclear whether EA plays a role in analgesia and anxiety relief through DRD1 and DRD2 in the BLA. Here, we used western blotting to examine the expression of DRD1 and DRD2 and pharmacological regulation combined with behavioral testing to detect anxiety-like behaviors. We observed that injection of the DRD1 antagonist SCH23390 or the DRD2 agonist quinpirole into the BLA contributed to anxiety-like behaviors in naive mice. EA also activated DRD1 or inhibited DRD2 in the BLA to alleviate anxiety-like behaviors. To further demonstrate the role of DRD1 and DRD2 in the BLA in spared nerve injury (SNI) model-induced anxiety-like behaviors, we injected the DRD1 agonist SKF38393 or the DRD2 antagonist sulpiride into the BLA. We found that both activation of DRD1 and inhibition of DRD2 could alleviate SNI-induced anxiety-like behaviors, and EA had a similar effect of alleviating anxiety. Additionally, neither DRD1 nor DRD2 in the BLA affected SNI-induced mechanical allodynia, but EA did. Overall, our work provides new insights into the mechanisms of neuropathic pain-induced anxiety and a possible explanation for the effect of EA treatment on anxiety caused by chronic pain.
Norepinephrine Induces PTSD-Like Memory Impairments via Regulation of the β-Adrenoceptor-cAMP/PKA and CaMK II/PKC Systems in the Basolateral Amygdala
Glucocorticoids (GCs) can modulate the memory enhancement process during stressful events, and this modulation requires arousal-induced norepinephrine (NE) activation in the basolateral amygdale (BLA). Our previous study found that an intrahippocampal infusion of propranolol dose-dependently induced post-traumatic stress disorder (PTSD)-like memory impairments. To explore the role of the noradrenergic system of the BLA in PTSD-like memory impairment, we injected various doses of NE into the BLA. We found that only a specific quantity of NE (0.3 μg) could induce PTSD-like memory impairments, accompanied by a reduction in phosphorylation of GluR1 at Ser845 and Ser831. Moreover, this phenomenon could be blocked by a protein kinase A (PKA) inhibitor or calcium/calmodulin-dependent protein kinase II (CaMK II) inhibitor. These findings demonstrate that NE could induce PTSD-like memory impairments regulation of the β-adrenoceptor receptor (β-AR)-3',5'-cyclic monophosphate (cAMP)/PKA and CaMK II/PKC signaling pathways.