Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,518 result(s) for "benthic zone"
Sort by:
Technical Note: Estimating light-use efficiency of benthic habitats using underwater O.sub.2 eddy covariance
Light-use efficiency defines the ability of primary producers to convert sunlight energy to primary production and is computed as the ratio between the gross primary production and the intercepted photosynthetic active radiation. While this measure has been applied broadly within terrestrial ecology to investigate habitat resource-use efficiency, it remains underused within the aquatic realm. This report provides a conceptual framework to compute hourly and daily light-use efficiency using underwater O.sub.2 eddy covariance, a recent technological development that produces habitat-scale rates of primary production under unaltered in situ conditions. The analysis, tested on two benthic flux datasets, documents that hourly light-use efficiency may approach the theoretical limit of 0.125 O.sub.2 per photon under low-light conditions, but it decreases rapidly towards the middle of the day and is typically 10-fold lower on a 24 h basis. Overall, light-use efficiency provides a useful measure of habitat functioning and facilitates site comparison in time and space.
Watered-down biodiversity? A comparison of metabarcoding results from DNA extracted from matched water and bulk tissue biomonitoring samples
Biomonitoring programs have evolved beyond the sole use of morphological identification to determine the composition of invertebrate species assemblages in an array of ecosystems. The application of DNA metabarcoding in freshwater systems for assessing benthic invertebrate communities is now being employed to generate biological information for environmental monitoring and assessment. A possible shift from the extraction of DNA from net-collected bulk benthic samples to its extraction directly from water samples for metabarcoding has generated considerable interest based on the assumption that taxon detectability is comparable when using either method. To test this, we studied paired water and benthos samples from a taxon-rich wetland complex, to investigate differences in the detection of arthropod taxa from each sample type. We demonstrate that metabarcoding of DNA extracted directly from water samples is a poor surrogate for DNA extracted from bulk benthic samples, focusing on key bioindicator groups. Our results continue to support the use of bulk benthic samples as a basis for metabarcoding-based biomonitoring, with nearly three times greater total richness in benthic samples compared to water samples. We also demonstrated that few arthropod taxa are shared between collection methods, with a notable lack of key bioindicator EPTO taxa in the water samples. Although species coverage in water could likely be improved through increased sample replication and/or increased sequencing depth, benthic samples remain the most representative, cost-effective method of generating aquatic compositional information via metabarcoding.
Recovery of Danish Coastal Ecosystems After Reductions in Nutrient Loading: A Holistic Ecosystem Approach
In the 1980s, Danish coastal waters suffered from eutrophication and several nutrient management plans have been implemented during the years to improve ecological status. This study aims at giving a holistic ecosystem perspective on 25 years of mitigation measures. We report trends of nutrient inputs and the responses to these in various chemical and biological components. Nutrient inputs from land were reduced by ~50 % for nitrogen (N) and 56 % for phosphorus (P) since 1990. These reductions resulted in significant and parallel declines in nutrient concentrations, and initiated a shift in the dominance of primary producers towards reduced phytoplankton biomass (chlorophyll a concentration) and increased cover of macroalgae in deeper waters. In the last 5 years, eelgrass meadows have also expanded towards deeper waters, in response to improving water clarity. An expected improvement of bottom water oxygen conditions has not been observed, presumably because more frequent stratification and higher water temperatures have counteracted the expected positive effects of reduced nutrient inputs. The biomass of the benthic macrofauna decreased as expected, but it was composed of a drastic decline of filter feeders paralleled by a more moderate increase of deposit feeders. This shift was most likely induced by increasing stratification. The reduced benthic filtration along with the limited eelgrass cover probably kept relatively more particles in suspension, which can explain why improvements in the Secchi depths were modest. Overall, several ecosystem components demonstrated clear signs of improvement, suggesting that at least partial recovery is attainable. On this basis, we propose a conceptual scheme for recovery of shallow coastal ecosystems following marked reductions in nutrient inputs.
Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale
Coastal food webs can be supported by local benthic or pelagic primary producers and by the import of organic matter. Distinguishing between these energy sources is essential for our understanding of ecosystem functioning. However, the relative contribution of these components to the food web at the landscape scale is often unclear, as many studies lack good taxonomic and spatial resolution across large areas. Here, using stable carbon isotopes, we report on the primary carbon sources for consumers and their spatial variability across one of the world's largest intertidal ecosystems (Dutch Wadden Sea; 1460 km2 intertidal surface area), at an exceptionally high taxonomic (178 species) and spatial resolution (9,165 samples from 839 locations). The absence of overlap in δ13C values between consumers and terrestrial organic matter suggests that benthic and pelagic producers dominate carbon input into this food web. In combination with the consistent enrichment of benthic primary producers (δ13C –16.3‰) relative to pelagic primary producers (δ13C –18.8) across the landscape, this allowed the use of a two-food-source isotope-mixing model. This spatially resolved modelling revealed that benthic primary producers (microphytobenthos) are the most important energy source for the majority of consumers at higher trophic levels (worms, molluscs, crustaceans, fish, and birds), and thus to the whole food web. In addition, we found large spatial heterogeneity in the δ13C values of benthic primary producers (δ13C –19.2 to –11.5‰) and primary consumers (δ13C –25.5 to –9.9‰), emphasizing the need for spatially explicit sampling of benthic and pelagic primary producers in coastal ecosystems. Our findings have important implications for our understanding of the functioning of ecological networks and for the management of coastal ecosystems.
Tropical rabbitfish and the deforestation of a warming temperate sea
A striking example of climate‐mediated range shifts in marine systems is the intrusion of tropical species into temperate areas world‐wide, but we know very little about the ecological consequences of these range expansions. In the Mediterranean Sea, the range expansion of tropical rabbitfishes that first entered the basin via the Suez Canal provides a good example of how tropical herbivorous fish can impact the structure of rocky bottoms in temperate seas. Two species of rabbitfishes have now become a dominant component of total fish biomass in the southernmost part of the eastern Mediterranean. Experimental evidence shows these species can profoundly transform benthic communities, turning algal forests into ‘barrens’, but the specific mechanisms that facilitate this shift have not been established. We surveyed ˜1000 km of coastline in the eastern Mediterranean and identified two clearly distinct areas, a warmer group of regions with abundant tropical rabbitfish and a colder group of regions where these consumers were absent/ extremely rare. In regions with abundant rabbitfish, canopy algae were 65% less abundant, and there was a 60% reduction of overall benthic biomass (algae and invertebrates) and a 40% decrease in total species richness. Video‐recorded feeding experiments showed that the extensive barrens characteristic of regions with abundant rabbitfish were not due to greater rates of herbivory by these tropical consumers, but rather by functional differences among the herbivores. Temperate herbivorous fish displayed the greatest macroalgae consumption rates overall, but they fed exclusively on established adult macroalgae. In contrast, in regions with abundant rabbitfishes, these consumers fed complementarily on both established macroalgae and on the epilithic algal matrix, which typically contains macroalgal recruits. Synthesis. Range‐shifting tropical rabbitfish can severely reduce the biomass and biodiversity of temperate reefs at a scale of hundreds of kilometres. A shift from macroalgal dominance to barrens is mediated by the addition of functionally diverse herbivores that characterize tropical reefs. This work highlights the importance of assessing the functional traits of range‐shifting species to determine potential mechanisms of impact on ecological communities.
Biofilm and Diatom Succession on Polyethylene (PE) and Biodegradable Plastic Bags in Two Marine Habitats: Early Signs of Degradation in the Pelagic and Benthic Zone?
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.
Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH(4)(+) and dissolved Si. Although effluxes of PO(4)(3-) were not altered significantly, changes were observed in sediment PO(4)(3-) sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments.
COI metabarcoding primer choice affects richness and recovery of indicator taxa in freshwater systems
Mixed community or environmental DNA marker gene sequencing has become a commonly used technique for biodiversity analyses in freshwater systems. Many cytochrome c oxidase subunit I (COI) primer sets are now available for such work. The purpose of this study is to test whether COI primer choice affects the recovery of arthropod richness, beta diversity, and recovery of target assemblages in the benthos kick-net samples typically used in freshwater biomonitoring. We examine six commonly used COI primer sets on samples collected from six freshwater sites. Biodiversity analyses show that richness is sensitive to primer choice and the combined use of multiple COI amplicons recovers higher richness. Thus, to recover maximum richness, multiple primer sets should be used with COI metabarcoding. In ordination analyses based on community dissimilarity, samples consistently cluster by site regardless of amplicon choice or PCR replicate. Thus, for broadscale community analyses, overall beta diversity patterns are robust to COI marker choice. Recovery of traditional freshwater bioindicator assemblages such as Ephemeroptera, Trichoptera, Plectoptera, and Chironomidae as well as Arthropoda site indicators were differentially detected by each amplicon tested. This work will help future biodiversity and biomonitoring studies develop not just standardized, but optimized workflows that either maximize taxon-detection or the selection of amplicons for water quality or Arthropoda site indicators.
Biofilm and Diatom Succession on Polyethylene
The production of biodegradable plastic is increasing. Given the augmented littering of these products an increasing input into the sea is expected. Previous laboratory experiments have shown that degradation of plastic starts within days to weeks. Little is known about the early composition and activity of biofilms found on biodegradable and conventional plastic debris and its correlation to degradation in the marine environment. In this study we investigated the early formation of biofilms on plastic shopper bags and its consequences for the degradation of plastic. Samples of polyethylene and biodegradable plastic were tested in the Mediterranean Sea for 15 and 33 days. The samples were distributed equally to a shallow benthic (sedimentary seafloor at 6 m water depth) and a pelagic habitat (3 m water depth) to compare the impact of these different environments on fouling and degradation. The amount of biofilm increased on both plastic types and in both habitats. The diatom abundance and diversity differed significantly between the habitats and the plastic types. Diatoms were more abundant on samples from the pelagic zone. We anticipate that specific surface properties of the polymer types induced different biofilm communities on both plastic types. Additionally, different environmental conditions between the benthic and pelagic experimental site such as light intensity and shear forces may have influenced unequal colonisation between these habitats. The oxygen production rate was negative for all samples, indicating that the initial biofilm on marine plastic litter consumes oxygen, regardless of the plastic type or if exposed in the pelagic or the benthic zone. Mechanical tests did not reveal degradation within one month of exposure. However, scanning electron microscopy (SEM) analysis displayed potential signs of degradation on the plastic surface, which differed between both plastic types. This study indicates that the early biofilm formation and composition are affected by the plastic type and habitat. Further, it reveals that already within two weeks biodegradable plastic shows signs of degradation in the benthic and pelagic habitat.