Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
928 result(s) for "beta-Thalassemia - genetics"
Sort by:
β-Thalassemias
Defective synthesis of the β-globin chain causes recessively inherited disorders characterized by inadequate hemoglobin production and chronic anemia. Transfusion may lead to iron overload. Hematopoietic stem-cell transplantation may be curative. Gene therapy holds promise for reversing anemia.
Highly efficient therapeutic gene editing of human hematopoietic stem cells
Re-expression of the paralogous γ-globin genes (HBG1/2) could be a universal strategy to ameliorate the severe β-globin disorders sickle cell disease (SCD) and β-thalassemia by induction of fetal hemoglobin (HbF, α2γ2)1. Previously, we and others have shown that core sequences at the BCL11A erythroid enhancer are required for repression of HbF in adult-stage erythroid cells but are dispensable in non-erythroid cells2–6. CRISPR–Cas9-mediated gene modification has demonstrated variable efficiency, specificity, and persistence in hematopoietic stem cells (HSCs). Here, we demonstrate that Cas9:sgRNA ribonucleoprotein (RNP)-mediated cleavage within a GATA1 binding site at the +58 BCL11A erythroid enhancer results in highly penetrant disruption of this motif, reduction of BCL11A expression, and induction of fetal γ-globin. We optimize conditions for selection-free on-target editing in patient-derived HSCs as a nearly complete reaction lacking detectable genotoxicity or deleterious impact on stem cell function. HSCs preferentially undergo non-homologous compared with microhomology-mediated end joining repair. Erythroid progeny of edited engrafting SCD HSCs express therapeutic levels of HbF and resist sickling, while those from patients with β-thalassemia show restored globin chain balance. Non-homologous end joining repair-based BCL11A enhancer editing approaching complete allelic disruption in HSCs is a practicable therapeutic strategy to produce durable HbF induction.Optimized conditions for ribonucleoprotein delivery of Cas9–sgRNA complexes enables precise and efficient gene editing to restore fetal hemoglobin expression in sickle cell disease patient-derived HSCs
β-Thalassemia
β-Thalassemia is caused by reduced (β + ) or absent (β 0 ) synthesis of the β-globin chains of hemoglobin. Three clinical and hematological conditions of increasing severity are recognized: the β-thalassemia carrier state, thalassemia intermedia, and thalassemia major, a severe transfusion-dependent anemia. The severity of disease expression is related mainly to the degree of α-globin chain excess, which precipitates in the red blood cell precursors, causing both mechanic and oxidative damage (ineffective erythropoiesis). Any mechanism that reduces the number of unbound α-globin chains in the red cells may ameliorate the detrimental effects of excess α-globin chains. Factors include the inheritance of mild/silent β-thalassemia mutations, the coinheritance of α-thalassemia alleles, and increased γ-globin chain production. The clinical severity of β-thalassemia syndromes is also influenced by genetic factors unlinked to globin genes as well as environmental conditions and management. Transfusions and oral iron chelation therapy have dramatically improved the quality of life for patients with thalassemia major. Previously a rapidly fatal disease in early childhood, β-thalassemia is now a chronic disease with a greater life expectancy. At present, the only definitive cure is bone marrow transplantation. Therapies undergoing investigation are modulators of erythropoiesis and stem cell gene therapy. Genet Med advance online publication 03 November 2016
A Phase 3 Trial of Luspatercept in Patients with Transfusion-Dependent β-Thalassemia
Patients with transfusion-dependent β-thalassemia were randomly assigned to receive luspatercept (a binder for TGF-β family member ligands) or placebo. During any 12-week period, a greater percentage of patients in the luspatercept group than in the placebo group had a reduction of at least 33% (70.5% vs. 29.5%) or at least 50% (40.2% vs. 6.3%) in the transfusion requirement.
Gene Therapy in Patients with Transfusion-Dependent β-Thalassemia
Gene therapy with CD34+ cells transduced with a lentivirus vector carrying a β-globin gene was performed in 22 patients. At a median of 26 months, all the patients were either transfusion-independent or had a major reduction in transfusion requirements.
CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia
Two patients, one with transfusion-dependent β-thalassemia and the other with sickle cell disease, received autologous CD34+ cells edited with CRISPR-Cas9 targeting of BCL11A . Their clinical course over the following 16 to 18 months supports further experimental testing of CRISPR-Cas9 gene editing to treat these diseases.
Gene therapy using haematopoietic stem and progenitor cells
Haematopoietic stem and progenitor cell (HSPC) gene therapy has emerged as an effective treatment modality for monogenic disorders of the blood system such as primary immunodeficiencies and β-thalassaemia. Medicinal products based on autologous HSPCs corrected using lentiviral and gammaretroviral vectors have now been approved for clinical use, and the site-specific genome modification of HSPCs using gene editing techniques such as CRISPR–Cas9 has shown great clinical promise. Preclinical studies have shown engineered HSPCs could also be used to cross-correct non-haematopoietic cells in neurodegenerative metabolic diseases. Here, we review the most recent advances in HSPC gene therapy and discuss emerging strategies for using HSPC gene therapy for a range of diseases.Haematopoietic stem and progenitor cell (HSPC) gene therapy using lentiviral or gammaretroviral vectors has now been approved for clinical use. In this Review, Ferrari, Thrasher and Aiuti discuss the history of HSPC gene therapy, the clinical promise of gene-editing HPSCs and the use of HSPC gene therapy to treat specific diseases.
CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells
The β-haemoglobinopathies, such as sickle cell disease and β-thalassaemia, are caused by mutations in the β-globin ( HBB ) gene and affect millions of people worldwide. Ex vivo gene correction in patient-derived haematopoietic stem cells followed by autologous transplantation could be used to cure β-haemoglobinopathies. Here we present a CRISPR/Cas9 gene-editing system that combines Cas9 ribonucleoproteins and adeno-associated viral vector delivery of a homologous donor to achieve homologous recombination at the HBB gene in haematopoietic stem cells. Notably, we devise an enrichment model to purify a population of haematopoietic stem and progenitor cells with more than 90% targeted integration. We also show efficient correction of the Glu6Val mutation responsible for sickle cell disease by using patient-derived stem and progenitor cells that, after differentiation into erythrocytes, express adult β-globin (HbA) messenger RNA, which confirms intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting haematopoietic stem cells by homologous recombination at the HBB locus to advance the development of next-generation therapies for β-haemoglobinopathies. These preclinical studies outline a CRISPR-based methodology for correcting β-globin gene mutations in haematopoietic stem cells to advance the development of next-generation therapies for β-haemoglobinopathies. Gene targeting in haematopoietic stem cells Matthew Porteus and colleagues develop a method to improve gene editing for correction of β-haemoglobinopathies such as sickle cell disease and β-thalassaemia. By optimizing delivery and CRISPR-based homologous recombination gene correction, scaling the genome editing protocol, and including a reporter gene to enrich for edited cell populations, the authors can increase the number of corrected long-term haematopoietic stem cells ex vivo that can retain their functionality after transplantation. Initial testing suggests that this strategy could be further developed for clinical implementation.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
β-hemoglobinopathies such as sickle cell disease (SCD) and β-thalassemia result from mutations in the adult HBB (β-globin) gene. Reactivating the developmentally silenced fetal HBG1 and HBG2 (γ-globin) genes is a therapeutic goal for treating SCD and β-thalassemia 1 . Some forms of hereditary persistence of fetal hemoglobin (HPFH), a rare benign condition in which individuals express the γ-globin gene throughout adulthood, are caused by point mutations in the γ-globin gene promoter at regions residing ~115 and 200 bp upstream of the transcription start site. We found that the major fetal globin gene repressors BCL11A and ZBTB7A (also known as LRF) directly bound to the sites at –115 and –200 bp, respectively. Furthermore, introduction of naturally occurring HPFH-associated mutations into erythroid cells by CRISPR–Cas9 disrupted repressor binding and raised γ-globin gene expression. These findings clarify how these HPFH-associated mutations operate and demonstrate that BCL11A and ZBTB7A are major direct repressors of the fetal globin gene. The fetal globin gene repressors BCL11A and ZBTB7A directly bind γ-globin gene promoter regions. Repressor binding is disrupted by naturally occurring point mutations located upstream of the transcriptional start site that are associated with hereditary persistence of fetal hemoglobin.
Beta-thalassemia
Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta globin gene on chromosome 11, leading to reduced (beta + ) or absent (beta 0 ) synthesis of the beta chains of hemoglobin (Hb). Transmission is autosomal recessive; however, dominant mutations have also been reported. Diagnosis of thalassemia is based on hematologic and molecular genetic testing. Differential diagnosis is usually straightforward but may include genetic sideroblastic anemias, congenital dyserythropoietic anemias, and other conditions with high levels of HbF (such as juvenile myelomonocytic leukemia and aplastic anemia). Genetic counseling is recommended and prenatal diagnosis may be offered. Treatment of thalassemia major includes regular RBC transfusions, iron chelation and management of secondary complications of iron overload. In some circumstances, spleen removal may be required. Bone marrow transplantation remains the only definitive cure currently available. Individuals with thalassemia intermedia may require splenectomy, folic acid supplementation, treatment of extramedullary erythropoietic masses and leg ulcers, prevention and therapy of thromboembolic events. Prognosis for individuals with beta-thalassemia has improved substantially in the last 20 years following recent medical advances in transfusion, iron chelation and bone marrow transplantation therapy. However, cardiac disease remains the main cause of death in patients with iron overload.