Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
129
result(s) for
"beta-Transducin Repeat-Containing Proteins - genetics"
Sort by:
YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3
The transcription coactivator YAP plays a vital role in Hippo pathway for organ-size control and tissue homeostasis. Recent studies have demonstrated YAP is closely related to immune disorders and inflammatory diseases, but the underlying mechanisms remain less defined. Here, we find that YAP promotes the activation of NLRP3 inflammasome, an intracellular multi-protein complex that orchestrates host immune responses to infections or sterile injuries. YAP deficiency in myeloid cells significantly attenuates LPS-induced systemic inflammation and monosodium urate (MSU) crystals-induced peritonitis. Mechanistically, YAP physically interacts with NLRP3 and maintains the stability of NLRP3 through blocking the association between NLRP3 and the E3 ligase β-TrCP1, the latter increases the proteasomal degradation of NLRP3 via K27-linked ubiquitination at lys380. Together, these findings establish a role of YAP in the activation of NLRP3 inflammasome, and provide potential therapeutic target to treat the NLRP3 inflammasome-related diseases.
YAP is known to play a role both in organ size via the Hippo signalling pathway and in inflammation, though the precise mechanism are unclear. Here, the authors report that YAP promotes activation of the NLRP3 inflammosome through binding interactions.
Journal Article
USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy
2018
We have previously demonstrated that USP24 is involved in cancer progression. Here, we found that USP24 expression is upregulated in M2 macrophages and lung cancer cells. Conditioned medium from USP24-knockdown M2 macrophages decreases the migratory and chemotactic activity of lung cancer cells and the angiogenic properties of human microvascular endothelial cell 1 (HMEC-1).
IL-6
expression is significantly decreased in USP24-knockdown M2 macrophages and lung cancer cells, and IL-6-replenished conditioned medium restores the migratory, chemotactic and angiogenetic properties of the cells. USP24 stabilizes p300 and β-TrCP to increase the levels of histone-3 acetylation and NF-κB, and decreases the levels of DNMT1 and IκB, thereby increasing
IL-6
transcription in M2 macrophages and lung cancer cells, results in cancer malignancy finally. IL-6 has previously been a target for cancer drug development. Here, we provide direct evidence to support that USP24 promotes
IL-6
expression, which might be beneficial for cancer therapy.
USP24 has previously been reported to be involved in cancer progression. Here, the authors demonstrate that USP24 stabilizes p300 and β-TrCP to increase the levels of NF-κB and histone-3 acetylation, and decrease DNMT1 and IκB levels which promotes
IL-6
expression in M2 macrophages and lung cancer cells.
Journal Article
Inhibition of SCF ubiquitin ligases by engineered ubiquitin variants that target the Cul1 binding site on the Skp1–F-box interface
by
Sicheri, Frank
,
Marcon, Edyta
,
Gorelik, Maryna
in
Amino Acid Sequence
,
beta-Transducin Repeat-Containing Proteins - antagonists & inhibitors
,
beta-Transducin Repeat-Containing Proteins - chemistry
2016
Skp1–Cul1–F-box (SCF) E3 ligases play key roles in multiple cellular processes through ubiquitination and subsequent degradation of substrate proteins. Although Skp1 and Cul1 are invariant components of all SCF complexes, the 69 different human F-box proteins are variable substrate binding modules that determine specificity. SCF E3 ligases are activated in many cancers and inhibitors could have therapeutic potential. Here, we used phage display to develop specific ubiquitin-based inhibitors against two F-box proteins, Fbw7 and Fbw11. Unexpectedly, the ubiquitin variants bind at the interface of Skp1 and F-box proteins and inhibit ligase activity by preventing Cul1 binding to the same surface. Using structure-based design and phage display, we modified the initial inhibitors to generate broad-spectrum inhibitors that targeted many SCF ligases, or conversely, a highly specific inhibitor that discriminated between even the close homologs Fbw11 and Fbw1. We propose that most F-box proteins can be targeted by this approach for basic research and for potential cancer therapies.
Journal Article
Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation
2017
Accumulated evidence suggests a physiological relationship between the transcription factor NRF3 (NFE2L3) and cancers. Under physiological conditions, NRF3 is repressed by its endoplasmic reticulum (ER) sequestration. In response to unidentified signals, NRF3 enters the nucleus and modulates gene expression. However, molecular mechanisms underlying the nuclear translocation of NRF3 and its target gene in cancer cells remain poorly understood. We herein report that multiple regulation of NRF3 activities controls cell proliferation. Our analyses reveal that under physiological conditions, NRF3 is rapidly degraded by the ER-associated degradation (ERAD) ubiquitin ligase HRD1 and valosin-containing protein (VCP) in the cytoplasm. Furthermore, NRF3 is also degraded by β-TRCP, an adaptor for the Skp1-Cul1-F-box protein (SCF) ubiquitin ligase in the nucleus. The nuclear translocation of NRF3 from the ER requires the aspartic protease DNA-damage inducible 1 homolog 2 (DDI2) but does not require inhibition of its HRD1-VCP-mediated degradation. Finally, NRF3 mediates gene expression of the cell cycle regulator U2AF homology motif kinase 1 (UHMK1) for cell proliferation. Collectively, our study provides us many insights into the molecular regulation and biological function of NRF3 in cancer cells.
Journal Article
circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR
2022
Senescence is a major aging process that contributes to the development of cardiovascular diseases, but the underlying molecular mechanisms remain largely unknown. One reason is due to the lack of suitable animal models. We aimed to generate a cardiomyocyte (CM)-specific senescent animal model, uncover the underlying mechanisms, and develop new therapies for aging associated cardiac dysfunction.
The gain/loss of circHIPK3 approach was used to explore the role of circHIPK3 in cardiomyocyte (CM) senescence. To investigate the mechanisms of circHIPK3 function in cardiac senescence, we generated CM-specific tamoxifen-induced circHIPK3 knockout (CKO) mice. We also applied various analyses including PCR, Western blot, nuclear and cytoplasmic protein extraction, immunofluorescence, echocardiography, RNA immunoprecipitation assay, RNA-pulldown assay, and co-immunoprecipitation.
Our novel CKO mice exhibited worse cardiac function, decreased circHIPK3 expression and telomere length shortening in the heart. The level of the senescence-inducer p21 in the hearts of CKO mice was significantly increased and survival was poor compared with control mice.
, the level of p21 in CMs was significantly decreased by circHIPK3 overexpression, but increased by circHIPK3 silencing. We showed that circHIPK3 was a scaffold for p21 mRNA-binding protein HuR and E3 ubiquitin ligase β-TrCP. circHIPK3 silencing weakened the interaction between HuR and β-TrCP, reduced HuR ubiquitination, and enhanced the interaction between HuR and p21 mRNA. Moreover, we found that mice injected with human umbilical cord mesenchymal stem cell-derived exosomes (UMSC-Exos) showed increased circHIPK3 levels, decreased levels of p21, longer telomere length, and good cardiac function. However, these beneficial effects exerted by UMSC-Exos were inhibited by silencing circHIPK3.
We successfully generated CM-specific CKO mice for aging research. Our results showed that deletion of circHIPK3 led to exaggerated CM senescence and decreased cardiac function. As a scaffold, circHIPK3 enhanced the binding of E3 ubiquitin ligase β-TrCP and HuR in the cytoplasm, leading to the ubiquitination and degradation of HuR and reduced p21 activity. In addition, UMSC-Exos exerted an anti-senescence and cardio-protective effect by delivering circHIPK3. These findings pave the way to the development of new therapies for aging associated cardiac dysfunction.
Journal Article
PTENα and PTENβ promote carcinogenesis through WDR5 and H3K4 trimethylation
2019
PTENα and PTENβ are two longer translational variants of phosphatase and tensin homolog (PTEN) messenger RNA. Their expressional regulations and functions in carcinogenesis remain largely unknown. Here, we demonstrate that, in contrast with the well-established tumour-suppressive role of canonical PTEN, PTENα and PTENβ promote tumourigenesis by directly interacting with the histone H3 lysine 4 (H3K4) presenter WDR5 to promote H3K4 trimethylation and maintain a tumour-promoting signature. We also show that USP9X and FBXW11 bind to the amino-terminal extensions of PTENα/β, and respectively deubiquitinate and ubiquitinate lysines 235 and 239 in PTENα to regulate PTENα/β stability. In accordance, USP9X promotes tumourigenesis and FBXW11 suppresses tumourigenesis through PTENα/β. Taken together, our results indicate that the
Pten
gene is a double-edged sword for carcinogenesis, and reinterpretation of the importance of the
Pten
gene in carcinogenesis is warranted.
Shen et al. show that PTENα/β stability is regulated through a ubiquitin-dependent mechanism mediated by USP9X and FBXW11 to modulate H3K4 trimethylation through WDR5 and promote tumour development.
Journal Article
TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling
2018
Beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) is crucial for the degradation of IκBα. Our previous transcriptome sequencing analysis revealed that
tetraspanin 15
(
TSPAN15
) was significantly upregulated in clinical oesophageal squamous cell carcinoma (OSCC) tissues. Here, we show that high TSPAN15 expression in OSCC tissues is significantly associated with lymph node and distant metastasis, advanced clinical stage, and poor prognosis. Elevated
TSPAN15
expression is, in part, caused by the reduction of miR-339-5p. Functional studies demonstrate that
TSPAN15
promotes metastatic capabilities of OSCC cells. We further show that TSPAN15 specifically interacts with BTRC to promote the ubiquitination and proteasomal degradation of p-IκBα, and thereby triggers NF-κB nuclear translocation and subsequent activation of transcription of several metastasis-related genes, including ICAM1, VCAM1, uPA, MMP9, TNFα, and CCL2. Collectively, our findings indicate that TSPAN15 may serve as a new biomarker and/or provide a novel therapeutic target to OSCC patients.
BTRC can activate NF-κB signaling through the ubiquitination and degradation of IκB-α. Here the authors show that TSPAN15 promotes metastasis of oesophageal squamous cell cancer by enhancing BTRC induced degradation of IκB-α and subsequent activation of NF-κB.
Journal Article
MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro
2010
A chronic proinflammatory state precedes pathological change in arterial endothelial cells located within regions of susceptibility to atherosclerosis. The potential contributions of regulatory microRNAs to this disequilibrium were investigated by artery site-specific profiling in normal adult swine. Expression of endothelial microRNA10a (miR-10a) was lower in the athero-susceptible regions of the inner aortic arch and aorto-renal branches than elsewhere. Expression of Homeobox A1 (HOXA1), a known miR-10a target, was up-regulated in the same locations. Endothelial transcriptome microarray analysis of miR-10a knockdown in cultured human aortic endothelial cells (HAEC) identified IκB/NF-κB–mediated inflammation as the top category of up-regulated biological processes. Phosphorylation of IκBα, a prerequisite for IκBα proteolysis and NF-κB activation, was significantly up-regulated in miR-10a knockdown HAEC and was accompanied by increased nuclear expression of NF-κB p65. The inflammatory biomarkers monocyte chemotactic protein 1 (MCP-1), IL-6, IL-8, vascular cell adhesion molecule 1 (VCAM-1), and E-selectin were elevated following miR-10a knockdown. Conversely, knockin of miR-10a (a conservative 25-fold increase) inhibited the basal expression of VCAM-1 and E-selectin in HAEC. Two key regulators of IκBα degradation—mitogen-activated kinase kinase kinase 7 (MAP3K7; TAK1) and β-transducin repeat-containing gene (βTRC)—contain a highly conserved miR-10a binding site in the 3' UTR. Both molecules were up-regulated by miR-10a knockdown and suppressed by miR-10a knockin, and evidence of direct miR-10a binding to the 3' UTR was demonstrated by luciferase assay. Comparative expression studies of endothelium located in athero-susceptible aortic arch and athero-protected descending thoracic aorta identified significantly up-regulated MAP3K7, βTRC, phopho-IκBα, and nuclear p65 expression suggesting that the differential expression of miR-10a contributes to the regulation of proinflammatory endothelial phenotypes in athero-susceptible regions in vivo.
Journal Article
TRIM67 Suppresses TNFalpha-Triggered NF-kB Activation by Competitively Binding Beta-TrCP to IkBa
by
Zhang, Jinyan
,
Qian, Ping
,
Fan, Wenchun
in
Animals
,
beta-Transducin Repeat-Containing Proteins - genetics
,
beta-Transducin Repeat-Containing Proteins - metabolism
2022
The transcription factor NF-κB plays an important role in modulation of inflammatory pathways, which are associated with inflammatory diseases, neurodegeneration, apoptosis, immune responses, and cancer. Increasing evidence indicates that TRIM proteins are crucial role in the regulation of NF-κB signaling pathways. In this study, we identified TRIM67 as a negative regulator of TNFα-triggered NF-κB activation. Ectopic expression of TRIM67 significantly represses TNFα-induced NF-κB activation and the expression of pro-inflammatory cytokines TNFα and IL-6. In contrast, Trim67 depletion promotes TNFα-induced expression of TNFα, IL-6, and Mcp-1 in primary mouse embryonic fibroblasts. Mechanistically, we found that TRIM67 competitively binding β-transducin repeat-containing protein (β-TrCP) to IκBα results inhibition of β-TrCP-mediated degradation of IκBα, which finally caused inhibition of TNFα-triggered NF-κB activation. In summary, our findings revealed that TRIM67 function as a novel negative regulator of NF-κB signaling pathway, implying TRIM67 might exert an important role in regulation of inflammation disease and pathogen infection caused inflammation.
Journal Article
Revealing β-TrCP activity dynamics in live cells with a genetically encoded biosensor
2022
The F-box protein beta-transducin repeat containing protein (β-TrCP) acts as a substrate adapter for the SCF E3 ubiquitin ligase complex, plays a crucial role in cell physiology, and is often deregulated in many types of cancers. Here, we develop a fluorescent biosensor to quantitatively measure β-TrCP activity in live, single cells in real-time. We find β-TrCP remains constitutively active throughout the cell cycle and functions to maintain discreet steady-state levels of its substrates. We find no correlation between expression levels of β-TrCP and β-TrCP activity, indicating post-transcriptional regulation. A high throughput screen of small-molecules using our reporter identifies receptor-tyrosine kinase signaling as a key axis for regulating β-TrCP activity by inhibiting binding between β-TrCP and the core SCF complex. Our study introduces a method to monitor β-TrCP activity in live cells and identifies a key signaling network that regulates β-TrCP activity throughout the cell cycle.
β-TrCP plays an important role in diverse cellular processes such as the cell cycle and inflammation. Here the authors develop a biosensor for β-TrCP activity and use it to investigate β-TrCP dynamics during the cell cycle, and to screen a small-molecule library for β-TrCP activators and inhibitors.
Journal Article