Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
42,769 result(s) for "big data science"
Sort by:
Current approaches for executing big data science projects—a systematic literature review
There is an increasing number of big data science projects aiming to create value for organizations by improving decision making, streamlining costs or enhancing business processes. However, many of these projects fail to deliver the expected value. It has been observed that a key reason many data science projects don’t succeed is not technical in nature, but rather, the process aspect of the project. The lack of established and mature methodologies for executing data science projects has been frequently noted as a reason for these project failures. To help move the field forward, this study presents a systematic review of research focused on the adoption of big data science process frameworks. The goal of the review was to identify (1) the key themes, with respect to current research on how teams execute data science projects, (2) the most common approaches regarding how data science projects are organized, managed and coordinated, (3) the activities involved in a data science projects life cycle, and (4) the implications for future research in this field. In short, the review identified 68 primary studies thematically classified in six categories. Two of the themes (workflow and agility) accounted for approximately 80% of the identified studies. The findings regarding workflow approaches consist mainly of adaptations to CRISP-DM ( vs entirely new proposed methodologies). With respect to agile approaches, most of the studies only explored the conceptual benefits of using an agile approach in a data science project ( vs actually evaluating an agile framework being used in a data science context). Hence, one finding from this research is that future research should explore how to best achieve the theorized benefits of agility. Another finding is the need to explore how to efficiently combine workflow and agile frameworks within a data science context to achieve a more comprehensive approach for project execution.
Birth and Development of Data Librarianship
Data librarianship and the role of the data librarian are an established reality in many countries, even though at different levels. Particularly, academic librarians have been involved in research data management for a long time and this role is acquiring precise features. In Italy, the data librarian is a figure still to be built and defined. The aim of the article is to offer a first systematic exploration in the fields of data librarianship and the role of the data librarian, both in their practical (what activities) and methodological (how activities are performed) features. The hope is to encourage the beginning of a necessary reflection on these topics. [Publisher's text]
Complete guide to open source big data stack
\"This book describes the creation of an actual generic open source big data stack, which is an integrated stack of big data components--each of which serves a specific function like storage, resource management, or queueing. Each component has a big data heritage and community to support it. It can support big data in that it is able to scale, and it is a distributed and robust system. In the Complete Guide to Open Source Big Data Stack, New Zealand author, Mike Frampton, begins by creating a private cloud and then by installing and examining Apache Brooklyn. After that he will use each chapter to introduce one piece of the big data stack-sharing how to source the software and then how to install it. He will then show how it works by simple example. Step by step and chapter by chapter, Frampton will create a real big data stack. The goal of this book is to show how a big data stack might be created and what components might be used. It attempts to do this with currently available Apache full and incubating systems. The aim is to introduce these components by example and show how they might work together. The book concentrates on Apache-based systems and shares detailed examples of cloud storage, release management, resources management, processing, queuing, frameworks, data visualization, and more.\"-- Provided by publisher.
A Brain-Inspired Trust Management Model to Assure Security in a Cloud Based IoT Framework for Neuroscience Applications
Rapid advancement of Internet of Things (IoT) and cloud computing enables neuroscientists to collect multilevel and multichannel brain data to better understand brain functions, diagnose diseases, and devise treatments. To ensure secure and reliable data communication between end-to-end (E2E) devices supported by current IoT and cloud infrastructures, trust management is needed at the IoT and user ends. This paper introduces an adaptive neuro-fuzzy inference system (ANFIS) brain-inspired trust management model (TMM) to secure IoT devices and relay nodes, and to ensure data reliability. The proposed TMM utilizes both node behavioral trust and data trust, which are estimated using ANFIS, and weighted additive methods respectively, to assess the nodes trustworthiness. In contrast to existing fuzzy based TMMs, simulation results confirm the robustness and accuracy of our proposed TMM in identifying malicious nodes in the communication network. With growing usage of cloud based IoT frameworks in Neuroscience research, integrating the proposed TMM into existing infrastructure will assure secure and reliable data communication among E2E devices.
Using big data analytics to improve HIV medical care utilisation in South Carolina: A study protocol
Introduction Linkage and retention in HIV medical care remains problematic in the USA. Extensive health utilisation data collection through electronic health records (EHR) and claims data represent new opportunities for scientific discovery. Big data science (BDS) is a powerful tool for investigating HIV care utilisation patterns. The South Carolina (SC) office of Revenue and Fiscal Affairs (RFA) data warehouse captures individual-level longitudinal health utilisation data for persons living with HIV (PLWH). The data warehouse includes EHR, claims and data from private institutions, housing, prisons, mental health, Medicare, Medicaid, State Health Plan and the department of health and human services. The purpose of this study is to describe the process for creating a comprehensive database of all SC PLWH, and plans for using BDS to explore, identify, characterise and explain new predictors of missed opportunities for HIV medical care utilisation.Methods and analysisThis project will create person-level profiles guided by the Gelberg-Andersen Behavioral Model and describe new patterns of HIV care utilisation. The population for the comprehensive database comes from statewide HIV surveillance data (2005–2016) for all SC PLWH (N≈18000). Surveillance data are available from the state health department’s enhanced HIV/AIDS Reporting System (e-HARS). Additional data pulls for the e-HARS population will include Ryan White HIV/AIDS Program Service Reports, Health Sciences SC data and Area Health Resource Files. These data will be linked to the RFA data and serve as sources for traditional and vulnerable domain Gelberg-Anderson Behavioral Model variables. The project will use BDS techniques such as machine learning to identify new predictors of HIV care utilisation behaviour among PLWH, and ‘missed opportunities’ for re-engaging them back into care.Ethics and disseminationThe study team applied for data from different sources and submitted individual Institutional Review Board (IRB) applications to the University of South Carolina (USC) IRB and other local authorities/agencies/state departments. This study was approved by the USC IRB (#Pro00068124) in 2017. To protect the identity of the persons living with HIV (PLWH), researchers will only receive linked deidentified data from the RFA. Study findings will be disseminated at local community forums, community advisory group meetings, meetings with our state agencies, local partners and other key stakeholders (including PLWH, policy-makers and healthcare providers), presentations at academic conferences and through publication in peer-reviewed articles. Data security and patient confidentiality are the bedrock of this study. Extensive data agreements ensuring data security and patient confidentiality for the deidentified linked data have been established and are stringently adhered to. The RFA is authorised to collect and merge data from these different sources and to ensure the privacy of all PLWH. The legislatively mandated SC data oversight council reviewed the proposed process stringently before approving it. Researchers will get only the encrypted deidentified dataset to prevent any breach of privacy in the data transfer, management and analysis processes. In addition, established secure data governance rules, data encryption and encrypted predictive techniques will be deployed. In addition to the data anonymisation as a part of privacy-preserving analytics, encryption schemes that protect running prediction algorithms on encrypted data will also be deployed. Best practices and lessons learnt about the complex processes involved in negotiating and navigating multiple data sharing agreements between different entities are being documented for dissemination.
Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia
Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.