Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
654 result(s) for "big geospatial data"
Sort by:
APPLICATION AND PLATFORM DESIGN OF GEOSPATIAL BIG DATA
With the wide application of Big Data, Artificial Intelligence and Internet of Things in geographic information technology and industry, geospatial big data arises at the historic moment. In addition to the traditional \"5V\" characteristics of big data, which are Volume, Velocity, Variety, Veracity and Valuable, geospatial big data also has the characteristics of \"Location Attribute\". At present, the study of geospatial big data are mainly concentrated in: knowledge mining and discovery of geospatial data, Spatiotemporal big data mining, the impact of geospatial big data on visualization, social perception and smart city, geospatial big data services for government decision-making support four aspects. Based on the connotation and extension of geospatial big data, this paper comprehensively defines geospatial big data comprehensively. The application of geospatial big data in location visualization, industrial thematic geographic information comprehensive service and geographic data science and knowledge service is introduced in detail. Furthermore, the key technologies and design indicators of the National Geospatial Big Data Platform are elaborated from the perspectives of infrastructure, functional requirements and non-functional requirements, and the design and application of the National Geospatial Public Service Big Data Platform are illustrated. The challenges and opportunities of geospatial big data are discussed from the perspectives of open resource sharing, management decision support and data security. Finally, the development trend and direction of geospatial big data are summarized and prospected, so as to build a high-quality geospatial big data platform and play a greater role in social public application services and administrative management decision-making.
Big Geospatial Data or Geospatial Big Data? A Systematic Narrative Review on the Use of Spatial Data Infrastructures for Big Geospatial Sensing Data in Public Health
Background: Often combined with other traditional and non-traditional types of data, geospatial sensing data have a crucial role in public health studies. We conducted a systematic narrative review to broaden our understanding of the usage of big geospatial sensing, ancillary data, and related spatial data infrastructures in public health studies. Methods: English-written, original research articles published during the last ten years were examined using three leading bibliographic databases (i.e., PubMed, Scopus, and Web of Science) in April 2022. Study quality was assessed by following well-established practices in the literature. Results: A total of thirty-two articles were identified through the literature search. We observed the included studies used various data-driven approaches to make better use of geospatial big data focusing on a range of health and health-related topics. We found the terms ‘big’ geospatial data and geospatial ‘big data’ have been inconsistently used in the existing geospatial sensing studies focusing on public health. We also learned that the existing research made good use of spatial data infrastructures (SDIs) for geospatial sensing data but did not fully use health SDIs for research. Conclusions: This study reiterates the importance of interdisciplinary collaboration as a prerequisite to fully taking advantage of geospatial big data for future public health studies.
Spatial data management in apache spark: the GeoSpark perspective and beyond
The paper presents the details of designing and developing GeoSpark, which extends the core engine of Apache Spark and SparkSQL to support spatial data types, indexes, and geometrical operations at scale. The paper also gives a detailed analysis of the technical challenges and opportunities of extending Apache Spark to support state-of-the-art spatial data partitioning techniques: uniform grid, R-tree, Quad-Tree, and KDB-Tree. The paper also shows how building local spatial indexes, e.g., R-Tree or Quad-Tree, on each Spark data partition can speed up the local computation and hence decrease the overall runtime of the spatial analytics program. Furthermore, the paper introduces a comprehensive experiment analysis that surveys and experimentally evaluates the performance of running de-facto spatial operations like spatial range, spatial K-Nearest Neighbors (KNN), and spatial join queries in the Apache Spark ecosystem. Extensive experiments on real spatial datasets show that GeoSpark achieves up to two orders of magnitude faster run time performance than existing Hadoop-based systems and up to an order of magnitude faster performance than Spark-based systems.
Google Earth Engine and Artificial Intelligence (AI): A Comprehensive Review
Remote sensing (RS) plays an important role gathering data in many critical domains (e.g., global climate change, risk assessment and vulnerability reduction of natural hazards, resilience of ecosystems, and urban planning). Retrieving, managing, and analyzing large amounts of RS imagery poses substantial challenges. Google Earth Engine (GEE) provides a scalable, cloud-based, geospatial retrieval and processing platform. GEE also provides access to the vast majority of freely available, public, multi-temporal RS data and offers free cloud-based computational power for geospatial data analysis. Artificial intelligence (AI) methods are a critical enabling technology to automating the interpretation of RS imagery, particularly on object-based domains, so the integration of AI methods into GEE represents a promising path towards operationalizing automated RS-based monitoring programs. In this article, we provide a systematic review of relevant literature to identify recent research that incorporates AI methods in GEE. We then discuss some of the major challenges of integrating GEE and AI and identify several priorities for future research. We developed an interactive web application designed to allow readers to intuitively and dynamically review the publications included in this literature review.
Geospatial Data Management Research: Progress and Future Directions
Without geospatial data management, today’s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis.
Deep Learning-Assisted Smart Process Planning, Robotic Wireless Sensor Networks, and Geospatial Big Data Management Algorithms in the Internet of Manufacturing Things
The purpose of our systematic review is to examine the recently published literature on the Internet of Manufacturing Things (IoMT), and integrate the insights it configures on deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big data management algorithms by employing Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Throughout October 2021 and January 2022, a quantitative literature review of aggregators such as ProQuest, Scopus, and the Web of Science was carried out, with search terms including “deep learning-assisted smart process planning + IoMT”, “robotic wireless sensor networks + IoMT”, and “geospatial big data management algorithms + IoMT”. As the analyzed research was published between 2018 and 2022, only 346 sources satisfied the eligibility criteria. A Shiny app was leveraged for the PRISMA flow diagram to comprise evidence-based collected and handled data. Major difficulties and challenges comprised identification of robust correlations among the inspected topics, but focusing on the most recent and relevant sources and deploying screening and quality assessment tools such as the Appraisal Tool for Cross-Sectional Studies, Dedoose, Distiller SR, the Mixed Method Appraisal Tool, and the Systematic Review Data Repository we integrated the core outcomes related to the IoMT. Future research should investigate dynamic scheduling and production execution systems advanced by deep learning-assisted smart process planning, data-driven decision making, and robotic wireless sensor networks.
The Impact of Scale on Extracting Individual Mobility Patterns from Location-Based Social Media
Understanding human movement patterns is crucial for comprehending how a city functions. It is also important for city planners and policymakers to create more efficient plans and policies for urban areas. Traditionally, human movement patterns were analyzed using origin–destination surveys, travel diaries, and other methods. Now, these patterns can be identified from various geospatial big data sources, such as mobile phone data, floating car data, and location-based social media (LBSM) data. These extensive datasets primarily identify individual or collective human movement patterns. However, the impact of spatial scale on the analysis of human movement patterns from these large geospatial data sources has not been sufficiently studied. Changes in spatial scale can significantly affect the results when calculating human movement patterns from these data. In this study, we utilized Weibo datasets for three different cities in China including Beijing, Guangzhou, and Shanghai. We aimed to identify the effect of different spatial scales on individual human movement patterns as calculated from LBSM data. For our analysis, we employed two indicators as follows: an external activity space indicator, the radius of gyration (ROG), and an internal activity space indicator, entropy. These indicators were chosen based on previous studies demonstrating their efficiency in analyzing sparse datasets like LBSM data. Additionally, we used two different ranges of spatial scales—10–100 m and 100–3000 m—to illustrate changes in individual activity space at both fine and coarse spatial scales. Our results indicate that although the ROG values show an overall increasing trend and the entropy values show an overall decreasing trend with the increase in spatial scale size, different local factors influence the ROG and entropy values at both finer and coarser scales. These findings will help to comprehend the dynamics of human movement across different scales. Such insights are invaluable for enhancing overall urban mobility and optimizing transportation systems.
Land Use and Land Cover Mapping in the Era of Big Data
We are currently living in the era of big data. The volume of collected or archived geospatial data for land use and land cover (LULC) mapping including remotely sensed satellite imagery and auxiliary geospatial datasets is increasing. Innovative machine learning, deep learning algorithms, and cutting-edge cloud computing have also recently been developed. While new opportunities are provided by these geospatial big data and advanced computer technologies for LULC mapping, challenges also emerge for LULC mapping from using these geospatial big data. This article summarizes the review studies and research progress in remote sensing, machine learning, deep learning, and geospatial big data for LULC mapping since 2015. We identified the opportunities, challenges, and future directions of using geospatial big data for LULC mapping. More research needs to be performed for improved LULC mapping at large scales.
Towards Integrated Data Management and Analysis for Spatio-Temporal Digital Terrain Models
Digital Terrain Models (DTMs) are still one of the most emerging products derived from remote sensing technologies such as LiDAR. A DTM usually is defined as the current digital representation of the earth´s surface. However, due to natural events and human influences the earth's surface is constantly changing. Therefore, the ability to analyse DTM data over time allows to understand and quantify changes, which are crucial for environmental monitoring, disaster management and urban planning. In this paper we introduce a GeoDBMS-based approach to manage, sustainably provide, analyse and visualize spatio-temporal DTM data. First, we review current approaches for the management and temporal modelling of DTM data. Then we present an event-based time-stamping spatio-temporal data model that meets special requirements for the management and analysis of DTMs to monitor spatial changes within the DTM in time. Based on this model, we present methods for the management and analysis of spatio-temporal DTMs. Thereby the model is extended by an appropriate server-infrastructure and a graphical user interface that enables to query, analyze, visualize and export time series of DTMs. Data consistency and accuracy for DTMs are also considered. A use case is conducted based on spatio-temporal DTM datasets of South-West Germany, demonstrating the suitability of the approach. Furthermore, geodetic applications and new DTM research directions are shown. Finally, conclusions are drawn from the paper and an outlook is presented describing our future research based on new use cases, including the analysis of DTMs and Digital Surface Models (DSMs) in the United Arab Emirates.
Assessing Spatiotemporal Changes of SDG Indicators at the Neighborhood Level in Guilin, China: A Geospatial Big Data Approach
Due to the challenges in data acquisition, especially for developing countries and at local levels, spatiotemporal evaluation for SDG11 indicators was still lacking. The availability of big data and earth observation technology can play an important role to facilitate the monitoring of urban sustainable development. Taking Guilin, a sustainable development agenda innovation demonstration area in China as a case study, we developed an assessment framework for SDG indicators 11.2.1, 11.3.1, and 11.7.1 at the neighborhood level using high-resolution (HR) satellite images, gridded population data, and other geospatial big data (e.g., road network and point of interest data). The findings showed that the proportion of the population with convenient access to public transport in the functional urban area gradually improved from 42% in 2013 to 52% in 2020. The increase in built-up land was much faster than the increase in population. The areal proportion of public open space decreased from 56% in 2013 to 24% in 2020, and the proportion of the population within the 400 m service areas of open public space decreased from 73% to 59%. The township-level results indicated that low-density land sprawling should be strictly managed, and open space and transportation facilities should be improved in the three fast-growing towns, Lingui, Lingchuan, and Dingjiang. The evaluation results of this study confirmed the applicability of SDG11 indicators to neighborhood-level assessment and local urban governance and planning practices. The evaluation framework of the SDG11 indicators based on HR satellite images and geospatial big data showed great promise to apply to other cities for targeted planning and assessment.