Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,932 result(s) for "biocide"
Sort by:
Correction: Ivanova, B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. Int. J. Mol. Sci. 2023, 24, 6306
Following a request from Dortmund University, the previous affiliation of the Guest Editor, Bojidarka Ivanova, in the original publication [...].Following a request from Dortmund University, the previous affiliation of the Guest Editor, Bojidarka Ivanova, in the original publication [...].
Advances in the treatment of problematic industrial biofilms
In nature, microorganisms tend to form biofilms that consist of extracellular polymeric substances with embedded sessile cells. Biofilms, especially mixed-culture synergistic biofilm consortia, are notoriously difficult to treat. They employ various defense mechanisms against attacks from antimicrobial agents. Problematic industrial biofilms cause biofouling as well as biocorrosion, also known as microbiologically influenced corrosion. Biocides are often used to treat biofilms together with scrubbing or pigging. Unfortunately, chemical treatments suppress vulnerable microbial species while allowing resistant species to take over. Repeated treatment cycles are typically needed in biofilm mitigation. This leads to biocide dosage escalation, causing environmental problems, higher costs and sometimes operational problems such as scale formation. New treatment methods are being developed such as enhanced biocide treatment and bacteriophage treatment. Special materials such as antibacterial stainless steels are also being created to combat biofilms. This review discussed some of the advances made in the fight against problematic industrial biofilms.
Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential
Background Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. Results Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes ( n  = 2522) and plasmids ( n  = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without ( p  < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative ( p  < 0.0001) and carry toxin-antitoxin systems ( p  < 0.0001) than plasmids without resistance genes. Conclusions This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions.
Biocides in antifouling paint formulations currently registered for use
Antifouling paints incorporate biocides in their composition seeking to avoid or minimize the settlement and growing of undesirable fouling organisms. Therefore, biocides are released into the aquatic environments also affecting several nontarget organisms and, thus, compromising ecosystems. Despite global efforts to investigate the environmental occurrence and toxicity of biocides currently used in antifouling paints, the specific active ingredients that have been used in commercial products are poorly known. Thus, the present study assessed the frequencies of occurrence and relative concentrations of biocides in antifouling paint formulations registered for marketing worldwide. The main data were obtained from databases of governmental agencies, business associations, and safety data sheets from paint manufacturers around the world. The results pointed out for 25 active ingredients currently used as biocides, where up to six biocides have been simultaneously used in the examined formulations. Cuprous oxide, copper pyrithione, zinc pyrithione, zineb, DCOIT, and cuprous thiocyanate were the most frequent ones, with mean relative concentrations of 35.9 ± 12.8%, 2.9 ± 1.6%, 4.0 ± 5.3%, 5.4 ± 2.0%, 1.9 ± 1.9%, and 18.1 ± 8.0% (w/w) of respective biocide present in the antifouling paint formulations. Surprisingly, antifouling paints containing TBT as an active ingredient are still being registered for commercialization nowadays. These results can be applied as a proxy of biocides that are possibly being used by antifouling systems and, consequently, released into the aquatic environment, which can help to prioritize the active ingredients that should be addressed in future studies.
Towards a Harmonized Terminology: A Glossary for Biocide Susceptibility Testing
Disinfection is a key strategy to reduce the burden of infections. The contact of bacteria to biocides—the active substances of disinfectants—has been linked to bacterial adaptation and the development of antimicrobial resistance. Currently, there is no scientific consensus on whether the excessive use of biocides contributes to the emergence and spread of multidrug resistant bacteria. The comprehensive analysis of available data remains a challenge because neither uniform test procedures nor standardized interpretive criteria nor harmonized terms are available to describe altered bacterial susceptibility to biocides. In our review, we investigated the variety of criteria and the diversity of terms applied to interpret findings in original studies performing biocide susceptibility testing (BST) of field isolates. An additional analysis of reviews summarizing the knowledge of individual studies on altered biocide susceptibility provided insights into currently available broader concepts for data interpretation. Both approaches pointed out the urgent need for standardization. We, therefore, propose that the well-established and approved concepts for interpretation of antimicrobial susceptibility testing data should serve as a role model to evaluate biocide resistance mechanisms on a single cell level. Furthermore, we emphasize the adaptations necessary to acknowledge the specific needs for the evaluation of BST data. Our approach might help to increase scientific awareness and acceptance.
Bioactivity Assessment of Functionalized TiOsub.2 Powder with Dihydroquercetin
Biological activities, including cell viability, oxidative stress, genotoxicity/antigenotoxicity, and antimicrobial activity, were evaluated for a visible-light-responsive TiO[sub.2]-based ICT complex with dihydroquercetin (DHQ) and compared with pristine TiO[sub.2], its inorganic component. Pristine TiO[sub.2] did not induce cytotoxicity in MRC-5 or HeLa cells within the tested concentration range (1–20 mg/mL), while TiO[sub.2]/DHQ displayed a significant reduction in cell viability in both cell lines at higher concentrations (≥10 mg/mL). The analysis of reactive oxygen species (ROS) production revealed that TiO[sub.2]/DHQ significantly reduced ROS levels in both cell types (MRC-5 and HeLa), with HeLa cells showing a more substantial reduction at lower concentrations. Genotoxicity assessment using the comet assay demonstrated that TiO[sub.2] induced DNA damage in MRC-5 cells, while TiO[sub.2]/DHQ did not, indicating that DHQ mitigates the genotoxic potential of TiO[sub.2]. Furthermore, TiO[sub.2]/DHQ exhibited antigenotoxic effects by reducing H[sub.2]O[sub.2]-induced DNA damage in MRC-5 cells, supporting its protective role against oxidative stress. Preliminary antimicrobial tests revealed that TiO[sub.2]/DHQ exhibits antimicrobial activity against E. coli under visible-light excitation, while TiO[sub.2] does not. These findings suggest that the TiO[sub.2]-based ICT complex with DHQ with enhanced antioxidant properties can potentially serve as a safe, non-toxic biocide agent.
Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms
Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials.
Selection and dissemination of antimicrobial resistance in Agri-food production
Public unrest about the use of antimicrobial agents in farming practice is the leading cause of increasing and the emergences of Multi-drug Resistant Bacteria that have placed pressure on the agri-food industry to act. The usage of antimicrobials in food and agriculture have direct or indirect effects on the development of Antimicrobial resistance (AMR) by bacteria associated with animals and plants which may enter the food chain through consumption of meat, fish, vegetables or some other food sources. In addition to antimicrobials, recent reports have shown that AMR is associated with tolerance to heavy metals existing naturally or used in agri-food production. Besides, biocides including disinfectants, antiseptics and preservatives which are widely used in farms and slaughter houses may also contribute in the development of AMR. Though the direct transmission of AMR from food-animals and related environment to human is still vague and debatable, the risk should not be neglected. Therefore, combined global efforts are necessary for the proper use of antimicrobials, heavy metals and biocides in agri-food production to control the development of AMR. These collective measures will preserve the effectiveness of existing antimicrobials for future generations.
Antialgal potential of selected botanicals against biofilm isolated from lime plaster
Exterior plasters can be disturbed by biological biofilms. A significant part of the biofilms are green algae. Present chemical preparations for protection of plasters against algae are mostly base on artificial chemicals those can be very often persistent and danger. It is necessary to find new, more natural biocidal substances and mixtures. In the present study, five selected botanicals (thyme oil, cinnamon oil, thymol, carvacrol, eugenol) was tested for their antialgal properties in aquatic test with biofilm isolated from lime plaster. The botanicals were dissolved in an organic solvent dimethysulfoxide (DMSO). The tests were performed in plastic microplates under laboratory conditions in a biological incubator for 14 days. The total inhibition concentration (TIC) was a measured endpoint. The tests with concentrations in range of 200 to 25 mg/L and 0 mg/L were performed. The own solvent was not toxic to biofilm. The results did not show TIC effects for cinnamon oil in the tested range of concentrations. TIC values were observed in the case of thymol and thyme oil (200-100 mg/L) and eugenol or carvacrol (25 mg/L).