Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
182
result(s) for
"bioconjugate"
Sort by:
Current Development of siRNA Bioconjugates: From Research to the Clinic
by
Chernikov, Ivan V.
,
Chernolovskaya, Elena L.
,
Vlassov, Valentin V.
in
Aptamers
,
bioconjugate
,
chemical modifications
2019
Small interfering RNAs (siRNAs) acting via RNA interference mechanisms are able to recognize a homologous mRNA sequence in the cell and induce its degradation. The main problems in the development of siRNA-based drugs for therapeutic use are the low efficiency of siRNA delivery to target cells and the degradation of siRNAs by nucleases in biological fluids. Various approaches have been proposed to solve the problem of siRNA delivery
(e.g., viruses, cationic lipids, polymers, nanoparticles), but all have limitations for therapeutic use. One of the most promising approaches to solve the problem of siRNA delivery to target cells is bioconjugation; i.e., the covalent connection of siRNAs with biogenic molecules (lipophilic molecules, antibodies, aptamers, ligands, peptides, or polymers). Bioconjugates are \"ideal nanoparticles\" since they do not need a positive charge to form complexes, are less toxic, and are less effectively recognized by components of the immune system because of their small size. This review is focused on strategies and principles for constructing siRNA bioconjugates for
use.
Journal Article
Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window
by
Antaris, Alexander L.
,
Liang, Yongye
,
Zhu, Shoujun
in
Animals
,
Biochemistry
,
Biological Sciences
2017
Fluorescence imaging multiplicity of biological systems is an area of intense focus, currently limited to fluorescence channels in the visible and first near-infrared (NIR-I; ∼700–900 nm) spectral regions. The development of conjugatable fluorophores with longer wavelength emission is highly desired to afford more targeting channels, reduce background autofluorescence, and achieve deeper tissue imaging depths. We have developed NIR-II (1,000–1,700 nm) molecular imaging agents with a bright NIR-II fluorophore through high-efficiency click chemistry to specific molecular antibodies. Relying on buoyant density differences during density gradient ultracentrifugation separations, highly pure NIR-II fluorophore-antibody conjugates emitting ∼1,100 nm were obtained for use as molecular-specific NIR-II probes. This facilitated 3D staining of ∼170-μm histological brain tissues sections on a home-built confocal microscope, demonstrating multicolor molecular imaging across both the NIR-I and NIR-II windows (800–1,700 nm).
Journal Article
Current Aspects of siRNA Bioconjugate for In Vitro and In Vivo Delivery
2019
Studies on siRNA delivery have seen intense growth in the past decades since siRNA has emerged as a new class of gene therapeutics for the treatment of various diseases. siRNA bioconjugate, as one of the major delivery strategies, offers the potential to enhance and broaden pharmacological properties of siRNA, while minimizing the heterogeneity and stability-correlated toxicology. This review summarizes the recent developments of siRNA bioconjugate, including the conjugation with antibody, peptide, aptamer, small chemical, lipidoid, cell-penetrating peptide polymer, and nanoparticle. These siRNA bioconjugate, either administrated alone or formulated with other agents, could significantly improve pharmacokinetic behavior, enhance the biological half-life, and increase the targetability while maintaining sufficient gene silencing activity, with a concomitant improvement of the therapeutic outcomes and diminishment of adverse effects. This review emphasizes the delivery application of these siRNA bioconjugates, especially the conjugation strategy that control the integrity, stability and release of siRNA bioconjugates. The limitations conferred by these conjugation strategies have also been covered.
Journal Article
Graphene and Graphene Oxide as a Support for Biomolecules in the Development of Biosensors
by
Sastry, Murali
,
Singh Raman, RK
,
Shahriari, Shiva
in
Biochemistry
,
Biocompatibility
,
bioconjugate
2021
Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.
Journal Article
Conjugates of Ciprofloxacin and Levofloxacin with Cell-Penetrating Peptide Exhibit Antifungal Activity and Mammalian Cytotoxicity
by
Dębowski, Dawid
,
Gucwa, Katarzyna
,
Martynow, Dorota
in
Animals
,
Anti-Infective Agents - chemical synthesis
,
Anti-Infective Agents - pharmacology
2020
Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25–100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10–100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.
Journal Article
Current ADC Linker Chemistry
by
Ghone, Sanjeevani
,
Jain, Nareshkumar
,
Smith, Sean W.
in
Antibodies, Monoclonal - chemistry
,
Biochemistry
,
Biomedical and Life Sciences
2015
The list of ADCs in the clinic continues to grow, bolstered by the success of first two marketed ADCs: ADCETRIS® and Kadcyla®. Currently, there are 40 ADCs in various phases of clinical development. However, only 34 of these have published their structures. Of the 34 disclosed structures, 24 of them use a linkage to the thiol of cysteines on the monoclonal antibody. The remaining 10 candidates utilize chemistry to surface lysines of the antibody. Due to the inherent heterogeneity of conjugation to the multiple lysines or cysteines found in mAbs, significant research efforts are now being directed toward the production of discrete, homogeneous ADC products, via site-specific conjugation. These site-specific conjugations may involve genetic engineering of the mAb to introduce discrete, available cysteines or non-natural amino acids with an orthogonally-reactive functional group handle such as an aldehyde, ketone, azido, or alkynyl tag. These site-specific approaches not only increase the homogeneity of ADCs but also enable novel bio-orthogonal chemistries that utilize reactive moieties other than thiol or amine. This broadens the diversity of linkers that can be utilized which will lead to better linker design in future generations of ADCs.
Journal Article
Peptide-Based Bioconjugates and Therapeutics for Targeted Anticancer Therapy
2022
With rapidly growing knowledge in bioinformatics related to peptides and proteins, amino acid-based drug-design strategies have recently gained importance in pharmaceutics. In the past, peptide-based biomedicines were not widely used due to the associated severe physiological problems, such as low selectivity and rapid degradation in biological systems. However, various interesting peptide-based therapeutics combined with drug-delivery systems have recently emerged. Many of these candidates have been developed for anticancer therapy that requires precisely targeted effects and low toxicity. These research trends have become more diverse and complex owing to nanomedicine and antibody–drug conjugates (ADC), showing excellent therapeutic efficacy. Various newly developed peptide–drug conjugates (PDC), peptide-based nanoparticles, and prodrugs could represent a promising therapeutic strategy for patients. In this review, we provide valuable insights into rational drug design and development for future pharmaceutics.
Journal Article
Peptide Drug Conjugates and Their Role in Cancer Therapy
by
Chacon, Jessica
,
Lovasz, Daniel
,
Holland, Nathan
in
Antibodies, Monoclonal - therapeutic use
,
Antigens - therapeutic use
,
Antineoplastic Agents - chemistry
2023
Drug conjugates have become a significant focus of research in the field of targeted medicine for cancer treatments. Peptide-drug conjugates (PDCs), a subset of drug conjugates, are composed of carrier peptides ranging from 5 to 30 amino acid residues, toxic payloads, and linkers that connect the payload to the peptide. PDCs are further broken down into cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs), each having their own differences in the delivery of cytotoxic payloads. Generally, PDCs as compared to other drug conjugates—like antibody-drug conjugates (ADCs)—have advantages in tumor penetration, ease of synthesis and cost, and reduced off-target effects. Further, as compared to traditional cancer treatments (e.g., chemotherapy and radiation), PDCs have higher specificity for the target cancer with generally less toxic side effects in smaller doses. However, PDCs can have disadvantages such as poor stability and rapid renal clearance due to their smaller size and limited oral bioavailability due to digestion of its peptide structure. Some of these challenges can be overcome with modifications, and despite drawbacks, the intrinsic small size of PDCs with high target specificity still makes them an attractive area of research for cancer treatments.
Journal Article
Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules
by
Banik, Nipa
,
Lim, Ji-Hong
,
Park, Jooho
in
Angiogenesis
,
Anticoagulants
,
Anticoagulants - chemistry
2021
Heparin has been extensively studied as a safe medicine and biomolecule over the past few decades. Heparin derivatives, including low-molecular-weight heparins (LMWH) and heparin pentasaccharide, are effective anticoagulants currently used in clinical settings. They have also been studied as functional biomolecules or biomaterials for various therapeutic uses to treat diseases. Heparin, which has a similar molecular structure to heparan sulfate, can be used as a remarkable biomedicine due to its uniquely high safety and biocompatibility. In particular, it has recently drawn attention for use in drug-delivery systems, biomaterial-based tissue engineering, nanoformulations, and new drug-development systems through molecular formulas. A variety of new heparin-based biomolecules and conjugates have been developed in recent years and are currently being evaluated for use in clinical applications. This article reviews heparin derivatives recently studied in the field of drug development for the treatment of various diseases.
Journal Article
Prevention of Staphylococcus aureus Infections by Glycoprotein Vaccines Synthesized in Escherichia coli
2014
Background. Staphylococcus aureus is a leading cause of superficial and invasive human disease that is often refractory to antimicrobial therapy. Vaccines have the potential to reduce the morbidity, mortality, and economic impact associated with staphylococcal infections. However, single-component vaccines targeting S. aureus have failed to show efficacy in clinical trials. Methods. A novel glycoengineering technology for creation of a multicomponent staphylococcal vaccine is described. Genes encoding S. aureus capsular polysaccharide (CP) biosynthesis, PglB (a Campylobacter oligosaccharyl transferase), and a protein carrier (detoxified Pseudomonas aeruginosa exoprotein A or S. aureus α toxin [Hla]) were coexpressed in Escherichia coli. Recombinant proteins N-glycosylated with S. aureus serotype 5 or 8 CPs were purified from E. coli. Results. Rabbits and mice immunized with the glycoprotein vaccines produced antibodies that were active in vitro in functional assays. Active and passive immunization strategies targeting the CPs protected mice against bacteremia, and vaccines targeting Hla protected against lethal pneumonia. The CP-Hla bioconjugate vaccine protected against both bacteremia and lethal pneumonia, providing broad-spectrum efficacy against staphylococcal invasive disease. Conclusions. Glycoengineering technology, whereby polysaccharide and protein antigens are enzymatically linked in a simple E. coli production system, has broad applicability for use in vaccine development against encapsulated microbial pathogens.
Journal Article