Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,973
result(s) for
"biodegradable packaging"
Sort by:
BIODEGRADABLE PACKAGING AND EDIBLE COATING FOR FRESH-CUT FRUITS AND VEGETABLES
by
Galgano, F
,
Perretti, G
,
Di Bianco, V
in
biodegradable packaging, biopolymers, edible coating, fresh-cut fruits and vegetables, minimally processed foods, nanocomposites
,
Biopolymers
,
Coatings
2015
This work focuses on biodegradable packaging and edible coatings applied to fresh-cut fruits and vegetables and their effects on the product quality. Practical applications are mainly limited to the use of biodegradable materials that, however, do not allow full control of the product moisture loss. Better results can be achieved by the combined use of biodegradable packagings with edible coatings and recent research has shown that enrichment with silver-montmorillonite nanoparticles may be a promising technique. However, the actual utilization of these materials is still limited, due to the high costs of the raw materials and the limited production.
Journal Article
The Emergence of Edible and Food-Application Coatings for Food Packaging: A Review
by
Iversen, Luk Jun Lam
,
Rovina, Kobun
,
Matanjun, Patricia
in
Biodegradable materials
,
biodegradable packaging
,
Consumers
2022
Food packaging was not as important in the past as it is now, because the world has more people but fewer food resources. Food packaging will become more prevalent and go from being a nice-to-have to an essential feature of modern life. Food packaging has grown to be an important industry sector in today’s world of more people and more food. Food packaging innovation faces significant challenges in extending perishable food products’ shelf life and contributing to meeting daily nutrient requirements as people nowadays are searching for foods that offer additional health advantages. Modern food preservation techniques have two objectives: process viability and safe, environmentally friendly end products. Long-term storage techniques can include the use of edible coatings and films. This article gives a succinct overview of the supplies and procedures used to coat food products with conventional packaging films and coatings. The key findings summarizing the biodegradable packaging materials are emphasized for their ability to prolong the freshness and flavor of a wide range of food items; films and edible coatings are highlighted as viable alternatives to traditional packaging methods. We discuss the safety concerns and opportunities presented by applying edible films and coatings, allowing it to be used as quality indicators for time-sensitive foods.
Journal Article
Assessment of the Decomposition of Oxo- and Biodegradable Packaging Using FTIR Spectroscopy
by
Szymańska-Pulikowska, Agata
,
Markowicz, Florentyna
in
Biodegradability
,
Biodegradation
,
Bioplastics
2021
The strength and resistance of plastics at the end of their service life can hinder their degradation. The solution to this problem may be materials made of biodegradable and oxo-biodegradable plastics. The aim of this research was to determine the degree and nature of changes in the composition and structure of composted biodegradable and oxo-biodegradable bags. The research involved shopping bags and waste bags available on the Polish market. The composting of the samples was conducted in an industrial composting plant. As a result of the research, only some of the composted samples decomposed. After composting, all samples were analysed using FTIR (Fourier Transformation Infrared) spectroscopy. Carbonyl index and hierarchical cluster analysis method was used to detect similarities between the spectra of the new samples. The analysis of the obtained results showed that FTIR spectroscopy is a method that can be used to confirm the degradation and detect similarities in the structure of the analysed materials. The analysis of spectra obtained with the use of FTIR spectroscopy indicated the presence of compounds that may be a potential source of compost contamination. Plastics with certificates confirming their biodegradability and compostability should be completely biodegradable, i.e., each element used in their production should be biodegradable and safe for the environment.
Journal Article
The Influence of Starch Origin on the Properties of Starch Films: Packaging Performance
2021
Starch films can be used as materials for food packaging purposes. The goal of this study is to compare how the starch origin influence the selected starch film properties. The films were made from various starches such as that from maize, potato, oat, rice, and tapioca using 50%w of glycerine as a plasticizer. The obtained starch-based films were made using the well-known casting method from a starch solution in water. The properties of the films that were evaluated were tensile strength, water vapour transition rate, moisture content, wettability, and their surface free energy. Surface free energy (SFE) and its polar and dispersive components were calculated using the Owens-Wendt-Rabel-Kaelbe approach. The values of SFE in the range of 51.64 to 70.81 mJ∙m−2 for the oat starch-based film and the maize starch-based film. The films revealed worse mechanical properties than those of conventional plastics for packaging purposes. The results indicated that the poorest tensile strength was exhibited by the starch-based films made from oat (0.36 MPa) and tapioca (0.78 MPa) and the greatest tensile strength (1.49 MPa) from potato.
Journal Article
Polysaccharides for Biodegradable Packaging Materials: Past, Present, and Future (Brief Review)
2023
The ecological problems emerging due to accumulation of non-biodegradable plastics are becoming more and more urgent. This problem can be solved by the development of biodegradable materials which will replace the non-biodegradable ones. Among numerous approaches in this field, there is one proposing the use of polysaccharide-based materials. These polymers are biodegradable, non-toxic, and obtained from renewable resources. This review opens discussion about the application of polysaccharides for the creation of biodegradable packaging materials. There are numerous investigations developing new formulations using cross-linking of polymers, mixing with inorganic (metals, metal oxides, clays) and organic (dyes, essential oils, extracts) compounds. The main emphasis in the present work is made on development of the polymer blends consisting of cellulose, starch, chitin, chitosan, pectin, alginate, carrageenan with some synthetic polymers, polymers of natural origin, and essential oils.
Journal Article
Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation
by
Dumas, Emilie
,
Gharsallaoui, Adem
,
Baghi, Fatemeh
in
active packaging
,
Antiinfectives and antibacterials
,
antimicrobial agent
2022
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers’ expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as “biodegradable packaging”, “active packaging”, and “bioactive packaging” currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Journal Article
Application of natural extracts as active ingredient in biopolymer based packaging systems
2023
Active packaging systems come under novel techniques and are creating demands in food packaging aspects. They are specially designed for food products where shelf life is a key driving factor. Their wide range of functionality preserves the color, texture, smell, and taste of the food item retaining their freshness and edibility for longer than any other methods available on market. An active ingredient in packaging systems enables efficient consumable quality which resulted in reduced complaints from consumers. However, techniques must be inexpensive and environment-friendly. The use of biodegradable packaging systems reinforced by exploiting natural compounds forms the latest trend to attract consumer demand in substituting synthetic preservatives in foods that can protect against food spoilage. Natural extracts have gained commercial importance in active packaging nowadays for the delivery of safe and high-quality foods that are being employed in both fresh and processed produce. Development and use of innovative active packaging systems in varied forms are expected to increase in the future for food safety, quality, and stability. The review overviews the beneficial effects of plant acquired components in modulating product quality in packaged form for commercial aspects in the market.
Journal Article
Natural Polymers Used in Edible Food Packaging—History, Function and Application Trends as a Sustainable Alternative to Synthetic Plastic
2022
In this review, a historical perspective, functional and application trends of natural polymers used to the development of edible food packaging were presented and discussed. Polysaccharides and proteins, i.e., alginate; carrageenan; chitosan; starch; pea protein, were considered. These natural polymers are important materials obtained from renewable plant, algae and animal sources, as well as from agroindustrial residues. Historically, some of them have been widely used by ancient populations for food packaging until these were replaced by petroleum-based plastic materials after World War II. Nowadays, biobased materials for food packaging have attracted attention. Their use was boosted especially because of the environmental pollution caused by inappropriate disposal of plastic packaging. Biobased materials are welcome to the design of food packaging because they possess many advantages, such as biodegradability, biocompatibility and low toxicity. Depending on the formulation, certain biopolymer-based packaging may present good barrier properties, antimicrobial and antioxidant activities Thus, polysaccharides and proteins can be combined to form diverse composite films with improved mechanical and biological behaviors, making them suitable for packaging of different food products.
Journal Article
Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives
2023
Biodegradable packaging materials generally comprise a solution to the environmental problem caused by the consecutive use of conventional packaging materials (petroleum-based materials) even though these have a high cost. The monomers resulting from the slow degradation of petroleum-based materials contribute to the pollution of the environment. Biodegradable packaging materials distinguished by high biodegradability and biocompatibility can successfully replace the aforementioned packaging materials and thus solve the environmental problems caused by their use or deposition. Although several of the biodegradable packaging materials present defective properties, mainly mechanical and barrier properties, these are reduced or even eliminated by the addition of various improving additives and by blending them with other biopolymers. Various natural preservatives such as essential oils or other phytochemical extracts can also be incorporated into the biopolymer network to increase its efficacy. This treatment is particularly beneficial since it contributes to the increasing of the shelf life and storability of packaged foods such as fruits, vegetables, dairy products, meat and its products, poultry, and fish. For all the above reasons, the preferences of consumers and the critical thinking/decisions of the food product manufacturing industries in favor of the potential use of biodegradable packaging materials in foods are increasing more and more. In this context, the present review article addresses the most recently used biodegradable packaging materials for foods preservation by presenting their sources, advantages, limitations, and future perspectives.
Journal Article
Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging
by
Inostroza, Matías
,
Fiallos-Núñez, Johanna
,
Cardero, Yaniel
in
Antimicrobial agents
,
Biodegradability
,
Biodegradable materials
2024
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.
Journal Article