Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
8,113 result(s) for "biological nitrogen fixation"
Sort by:
Plant-soil feedbacks on free-living nitrogen fixation over geological time
Free-living heterotrophic nitrogen fixation (FNF) is a widespread nitrogen input pathway in terrestrial ecosystems. However, questions remain over the relative influence of co-occurring controls on patterns of heterotrophic FNF activity, especially across generalized stages of primary succession, from biomass accumulation to retrogressive phases. Here, we experimentally test two alternative hypotheses regarding FNF rates during ecosystem development: (H1) site (i.e., changes in soil fertility during succession) is the primary driver of leaf-litter FNF rates, vs. (H2) leaf-litter chemistry is the primary determinant of FNF activity across a broad range of ecosystem conditions. We evaluated these hypotheses across a well-studied soil chronosequence in California (i.e., the Ecological Staircase), which spans ∼1 million years of ecosystem development and displays extreme ranges in plant-soil nutrient conditions, culminating in the nutrient depleted and stunted Pygmy forest. Across this successional gradient, we implemented a reciprocal leaf-litter transplant and a common garden litter bag decomposition experiment with senesced needles of Pinus muricata. Our results support H1: rates of FNF were similar for all leaf-litter types decomposed at the same site regardless of initial leaf-litter C and nutrient contents. FNF rates sharply declined from the maximal to retrogressive stage of succession. Trends in P dynamics during decomposition suggest an important role of P in regulating FNF. For example, P. muricata litter collected from the infertile Pygmy site displayed substantially higher FNF rates when decomposed at the fertile site, in part by immobilizing significant quantities of P from the soil at the fertile site. Conversely, P. muricata litter collected from the fertile site decomposed more slowly at the Pygmy site, with concomitant declines in FNF rates that matched those of Pygmy site litter decomposed in situ. These results are consistent with the idea that, over millennia, long-term declines in P availability feedback to constrain FNF rates, in part explaining the emergence of extremely nutrient-poor and retrograded ecosystems.
Endophytic nitrogen fixation in sugarcane: present knowledge and future applications
In Brazil the long-term continuous cultivation of sugarcane with low N fertiliser inputs, without apparent depletion of soil-N reserves, led to the suggestion that N2-fixing bacteria associated with the plants may be the source of agronomically significant N inputs to this crop. From the 1950s to 1970s, considerable numbers of N2-fixing bacteria were found to be associated with the crop, but it was not until the late 1980s that evidence from N balance and 15N dilution experiments showed that some Brazilian varieties of sugarcane were able to obtain significant contributions from this source. The results of these studies renewed the efforts to search for N2-fixing bacteria, but this time the emphasis was on those diazotrophs that infected the interior of the plants. Within a few years several species of such 'endophytic diazotrophs' were discovered including Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans and Burkholderia sp. Work has continued on these endophytes within sugarcane plants, but to date little success has been attained in elucidating which endophyte is responsible for the observed BNF and in what site, or sites, within the cane plants the N2 fixation mainly occurs. Until such important questions are answered further developments or extension of this novel N2-fixing system to other economically important non-legumes (e.g. cereals) will be seriously hindered. As far as application of present knowledge to maximise BNF with sugarcane is concerned, molybdenum is an essential micronutrient. An abundant water supply favours high BNF inputs, and the best medium term strategy to increase BNF would appear to be based on cultivar selection on irrigated N deficient soils fertilised with Mo.
Decomposition and nutrient release in leaves of Atlantic Rainforest tree species used in agroforestry systems
Aiming to support the use of native species from the Atlantic Rainforest in local agroforestry systems, we analysed chemical and biochemical components related to leaf decomposition of Inga subnuda , Senna macranthera , Erythrina verna , Luehea grandiflora , Zeyheria tuberculosa , Aegiphila sellowiana , and Persea americana . These tree species are native (except for P. americana ) and commonly used in agroforestry systems in the Atlantic Rainforest. For the three first species (Fabaceae), we also analysed the remaining dry matter and released nutrients from leaves, using litter bags, and biological nitrogen fixation, using Bidens pilosa and Brachiaria plantaginea as references of non-N 2 -fixing plants. Leaves from I. subnuda , L. grandiflora , and P. americana had a lower decomposition rate than the other species, exhibiting negative correlations with lignin/N and (lignin+polyphenol)/N ratios. The percentages of remaining dry matter after 1 year were 69 % ( I. subnuda ), 26 % ( S. macranthera ) and 16 % ( E. verna ). Higher nutrient release was found in decreasing order from residues of E. verna , S. macranthera , and I. subnuda . The percentages of nitrogen fixation were 22.6 % ( E. verna ), 20.6 % ( I. subnuda ) and 16.6 % ( S. macranthera ). Diversification of tree species in agroforestry systems allows for input of diversified organic material and can contribute to maintaining and improving soil functions resulting in improvements of soil quality.
The success of BNF in soybean in Brazil
Approximately forty years after commercial cropping of soybean in Brazil began, the total area under this crop has reached over 13 M ha with a mean productivity of 2400 kg ha-1. Soybean varieties introduced from the USA and varieties rescued from early introductions in Brazilian territory were part of the Brazilian soybean-breeding programme which spread the crop from high to low latitudes. Disease-resistance, pest-resistance, tolerance to low fertility soils, as well as production of plants with pods sufficiently high above the ground for efficient mechanical harvesting, were all aims of the programme. Although BNF was not explicitly considered as a trait for selection in the breeding/selection programme, maximisation of biological nitrogen fixation (BNF) was favoured by conducting selection and breeding trials on soils low in N, in which the seeds were inoculated with efficient Bradyrhizobium inoculants but without N fertiliser application. Several efficient imported Bradyrhizobium strains were found to be unable to compete with native soil micro-flora and other previously-introduced Bradyrhizobium strains. Surprisingly, after being in the soil for many years one or two of these strains had become more competitive while maintaining their high BNF capacity. Today, these strains are included amongst the recommended Brazilian inoculants and have promoted significant improvements in grain yields. The breeding of soybeans in conditions that made grain yield highly dependent on BNF, and the continuous attention paid to the selection of Bradyrhizobium strains appropriate for the newly released varieties, have been the main contributors to today's high yields and their great benefit to the Brazilian economy. There seems to be no reason why this ongoing research programme should not serve as an appropriate model to improve BNF inputs to grain legumes in other countries of the world.
Endophytic colonization of plant roots by nitrogen-fixing bacteria
Nitrogen-fixing bacteria are able to enter into roots from the rhizosphere, particularly at the base of emerging lateral roots, between epidermal cells and through root hairs. In the rhizosphere growing root hairs play an important role in symbiotic recognition in legume crops. Nodulated legumes in endosymbiosis with rhizobia are amongst the most prominent nitrogen-fixing systems in agriculture. The inoculation of non-legumes, especially cereals, with various non-rhizobial diazotrophic bacteria has been undertaken with the expectation that they would establish themselves intercellularly within the root system, fixing nitrogen endophytically and providing combined nitrogen for enhanced crop production. However, in most instances bacteria colonize only the surface of the roots and remain vulnerable to competition from other rhizosphere micro-organisms, even when the nitrogen-fixing bacteria are endophytic, benefits to the plant may result from better uptake of soil nutrients rather than from endophytic nitrogen fixation. Azorhizobium caulinodans is known to enter the root system of cereals, other non-legume crops and Arabidopsis, by intercellular invasion between epidermal cells and to internally colonize the plant intercellularly, including the xylem. This raises the possibility that xylem colonization might provide a non-nodular niche for endosymbiotic nitrogen fixation in rice, wheat, maize, sorghum and other non-legume crops. A particularly interesting, naturally occurring, non-nodular xylem colonising endophytic diazotrophic interaction with evidence for endophytic nitrogen fixation is that of Gluconacetobacter diazotrophicus in sugarcane. Could this beneficial endophytic colonization of sugarcane by G. diazotrophicus be extended to other members of the Gramineae, including the major cereals, and to other major non-legume crops of the World?
Nitrogen fixation in rice systems: state of knowledge and future prospects
Rice is the most important cereal crop. In the next three decades, the world will need to produce about 60% more rice than today's global production to feed the extra billion people. Nitrogen is the major nutrient limiting rice production. Development of fertilizer-responsive varieties in the Green Revolution, coupled with the realization by farmers of the importance of nitrogen, has led to high rates of N fertilizer use on rice. Increased future demand for rice will entail increased application of fertilizer N. Awareness is growing, however, that such an increase in agricultural production needs to be achieved without endangering the environment. To achieve food security through sustainable agriculture, the requirement for fixed nitrogen must increasingly met by biological nitrogen fixation (BNF) rather than by using nitrogen fixed industrially. It is thus imperative to improve existing BNF systems and develop N2-fixing non-leguminous crops such as rice. Here we review the potentials and constraints of conventional BNF systems in rice agriculture, as well as the prospects of achieving in planta nitrogen fixation in rice.
Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems
New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.
Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward
$\\bullet$ The response of biological nitrogen fixation (BNF) to elevated CO2 was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. $\\bullet$ Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in $0.2 m^2$ sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P ($5 or 134 kg P ha^{-1}$); the third nutrient treatment was supplied with high P and N ($240 kg N ha^{-1}$)]. $\\bullet$ Under ambient CO2, high P increased BNF from $410 to 900 kg ha^{-1}$. Elevated CO2 further increased BNF to $1180 kg ha^{-1}$ with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. $\\bullet$ The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N.
How Does Proline Treatment Promote Salt Stress Tolerance During Crop Plant Development?
Soil salinity is one of the major abiotic stresses restricting the use of land for agriculture because it limits the growth and development of most crop plants. Improving productivity under these physiologically stressful conditions is a major scientific challenge because salinity has different effects at different developmental stages in different crops. When supplied exogenously, proline has improved salt stress tolerance in various plant species. Under high-salt conditions, proline application enhances plant growth with increases in seed germination, biomass, photosynthesis, gas exchange, and grain yield. These positive effects are mainly driven by better nutrient acquisition, water uptake, and biological nitrogen fixation. Exogenous proline also alleviates salt stress by improving antioxidant activities and reducing Na+ and Cl− uptake and translocation while enhancing K+ assimilation by plants. However, which of these mechanisms operate at any one time varies according to the proline concentration, how it is applied, the plant species, and the specific stress conditions as well as the developmental stage. To position salt stress tolerance studies in the context of a crop plant growing in the field, here we discuss the beneficial effects of exogenous proline on plants exposed to salt stress through well-known and more recently described examples in more than twenty crop species in order to appreciate both the diversity and commonality of the responses. Proposed mechanisms by which exogenous proline mitigates the detrimental effects of salt stress during crop plant growth are thus highlighted and critically assessed.
Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses
Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION. Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.