Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,449 result(s) for "bionic"
Sort by:
Laser-based bionic manufacturing
Over millions of years of natural evolution, organisms have developed nearly perfect structures and functions. The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials, and is driving the future paradigm shift of modern materials science and engineering. However, the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology, and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions. As one of the most valuable advanced manufacturing technologies of the 21st century, laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing. This review outlines the processing principles, manufacturing strategies, potential applications, challenges, and future development outlook of laser processing in bionic manufacturing domains. Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated: subtractive manufacturing, equivalent manufacturing, and additive manufacturing. The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces, bionic equivalent manufacturing for surface strengthening, and bionic additive manufacturing aiming to achieve bionic spatial structures, are reported. Finally, the key problems faced by laser-based bionic manufacturing, its limitations, and the development trends of its existing technologies are discussed. Provide a comprehensive overview of laser-based bionic manufacturing technology and its applications. Present remarkable progress in bionic manufacturing through laser subtractive manufacturing, laser equivalent manufacturing, and laser additive manufacturing. Outline research limitations and prospects for the development of laser-based bionic manufacturing.
Stimuli-responsive composite biopolymer actuators with selective spatial deformation behavior
Bioinspired actuators with stimuli-responsive and deformable properties are being pursued in fields such as artificial tissues, medical devices and diagnostics, and intelligent biosensors. These applications require that actuator systems have biocompatibility, controlled deformability, biodegradability, mechanical durability, and stable reversibility. Herein, we report a bionic actuator system consisting of stimuli-responsive genetically engineered silk–elastin-like protein (SELP) hydrogels and wood-derived cellulose nanofibers (CNFs), which respond to temperature and ionic strength underwater by ecofriendly methods. Programmed site-selective actuation can be predicted and folded into three-dimensional (3D) origami-like shapes. The reversible deformation performance of the SELP/CNF actuators was quantified, and complex spatial transformations of multilayer actuators were demonstrated, including a biomimetic flower design with selective petal movements. Such actuators consisting entirely of biocompatible and biodegradable materials will offer an option toward constructing stimuli-responsive systems for in vivo biomedicine soft robotics and bionic research.
Visualized in-sensor computing
In artificial nervous systems, conductivity changes indicate synaptic weight updates, but they provide limited information compared to living organisms. We present the pioneering design and production of an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for in-sensor computing. Here, we engineer a specialized mechanism for adaptively regulating ion doping through an ion-exchange membrane, enabling precise control over color-coded synaptic weight, an unprecedented achievement. The electrochromic neuromorphic transistor not only enhances electrochromatic capabilities for hardware coding but also establishes a visualized pattern-recognition network. Integrating the electrochromic neuromorphic transistor with an artificial whisker, we simulate a bionic reflex system inspired by the longicorn beetle, achieving real-time visualization of signal flow within the reflex arc in response to environmental stimuli. This research holds promise in extending the biomimetic coding paradigm and advancing the development of bio-hybrid interfaces, particularly in incorporating color-based expressions. The communication of colour information stands as one of the most immediate and widespread methods of interaction among biological entities. Xu et al. report an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for real-time visualised in-sensor computing.
Bionic Strategies for Pump Anti-Cavitation: A Comprehensive Review
The cavitation phenomenon presents a significant challenge in pump operation since the losses incurred by cavitation adversely impact pump performance. The many constraints of conventional anti-cavitation techniques have compelled researchers to explore biological processes for innovative alternatives. Consequently, the use of bionanotechnology for anti-cavitation pumping has emerged as a prominent study domain. Despite the extensive publication of publications on biomimetic technology, research concerning the use of anti-cavitation in pumps remains scarce. This review comprehensively summarizes, for the first time, the advancements and applications of bionic structures, bionic surface texture design, and bionic materials in pump anti-cavitation, addressing critical aspects such as blade leading-edge bionic structures, bionic worm shells, microscopic bionic textures, and innovative bionic coatings. Bionic technology may significantly reduce cavitation erosion and improve pump performance by emulating natural biological structures. This research elucidates the creative contributions of biomimetic designs and their anti-cavitation effects, hence boosting the anti-cavitation performance of pumps. This work integrates practical requirements and anticipates future applications of bionic technology in pump anti-cavitation, offering a significant research direction and reference for scholars in this domain.
A Bionic Camera-Based Polarization Navigation Sensor
Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode.
Nonlinear dynamic behavior of a bionic quasi-zero stiffness isolation system inspired by cobweb with the amplification effect
Inspired by the hunting strategy of spiders utilizing cobwebs, this study proposes a novel bionic cobweb structure (BCS) that facilitates the layer-by-layer nonlinear amplification of physical attributes for its embedded isolation components. By integrating a conventional quasi-zero stiffness (QZS) isolator within the BCS, a bionic QZS isolation system is achieved, exhibiting amplified negative stiffness and damping characteristics. The influences of BCS parameters on negative stiffness and damping are systematically investigated. A dynamic equation of the isolation system is formulated, incorporating the cubic trinomial stiffness and cubic quadrinomial damping terms. The displacement transmissibility is derived by the average method and verified via the Runge–Kutta method. The results manifest the effectiveness of the BCS nonlinear amplification effect on the enhancement of vibration isolation performance, accompanied by good coupling between the amplified negative stiffness and damping. Increasing the number of BCS layers, enlarging the initial angle θ i of the i-layer BCS, augmenting the pre-compression δ 20 of the negative stiffness springs, and shortening the connecting rod L s , synergistically contribute to a superior amplification of negative stiffness for better counterbalancing the substantial positive stiffness encountered in heavy-load scenarios. Furthermore, the amplified damping exhibits an anti-resonant characteristic, effectively mitigating the hardening nonlinearity without compromising high-frequency performance. The constructed bionic QZS isolation system with the BCS outperforms the initial QZS system in terms of resonance frequency, peak transmissibility, and isolation frequency band. Moreover, the proposed BCS has the prospect of emerging as a usual platform without modifying the current isolation elements. The intrinsic amplification effect and design logic can offer heuristic insights for future research.
Reducing the energy cost of human walking using an unpowered exoskeleton
With efficiencies derived from evolution, growth and learning, humans are very well-tuned for locomotion 1 . Metabolic energy used during walking can be partly replaced by power input from an exoskeleton 2 , but is it possible to reduce metabolic rate without providing an additional energy source? This would require an improvement in the efficiency of the human–machine system as a whole, and would be remarkable given the apparent optimality of human gait. Here we show that the metabolic rate of human walking can be reduced by an unpowered ankle exoskeleton. We built a lightweight elastic device that acts in parallel with the user's calf muscles, off-loading muscle force and thereby reducing the metabolic energy consumed in contractions. The device uses a mechanical clutch to hold a spring as it is stretched and relaxed by ankle movements when the foot is on the ground, helping to fulfil one function of the calf muscles and Achilles tendon. Unlike muscles, however, the clutch sustains force passively. The exoskeleton consumes no chemical or electrical energy and delivers no net positive mechanical work, yet reduces the metabolic cost of walking by 7.2 ± 2.6% for healthy human users under natural conditions, comparable to savings with powered devices. Improving upon walking economy in this way is analogous to altering the structure of the body such that it is more energy-effective at walking. While strong natural pressures have already shaped human locomotion, improvements in efficiency are still possible. Much remains to be learned about this seemingly simple behaviour. The attachment of a simple, unpowered, mechanical exoskeleton to the foot and ankle results in a net saving of 7% of the metabolic energy expended in human walking. Exoskeletons that act like muscles Walking is the most commonplace of activities, yet we know remarkably little about it and no robot has yet reproduced the grace and poise of a human walk. Steven Collins et al . now show that the attachment of a simple mechanical exoskeleton to the foot and ankle results in a 7% reduction of the metabolic energy expended in walking. This work shows that net energy input is not a fundamental requirement for reducing the metabolic cost of human walking, and that reducing calf muscle forces — while also fulfilling normal ankle functions and minimizing penalties associated with added mass or restricted motions — can be beneficial.
Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair
Because of the complex nerve anatomy and limited regeneration ability of natural tissue, the current treatment effect for long-distance peripheral nerve regeneration and spinal cord injury (SCI) repair is not satisfactory. As an alternative method, tissue engineering is a promising method to regenerate peripheral nerve and spinal cord, and can provide structures and functions similar to natural tissues through scaffold materials and seed cells. Recently, the rapid development of 3D printing technology enables researchers to create novel 3D constructs with sophisticated structures and diverse functions to achieve high bionics of structures and functions. In this review, we first outlined the anatomy of peripheral nerve and spinal cord, as well as the current treatment strategies for the peripheral nerve injury and SCI in clinical. After that, the design considerations of peripheral nerve and spinal cord tissue engineering were discussed, and various 3D printing technologies applicable to neural tissue engineering were elaborated, including inkjet, extrusion-based, stereolithography, projection-based, and emerging printing technologies. Finally, we focused on the application of 3D printing technology in peripheral nerve regeneration and spinal cord repair, as well as the challenges and prospects in this research field. The anatomy of the nervous system, the current treatment strategies of the nerve injury, and the design elements of the nerve scaffold are outlined. It can be a tool for researchers to learn basic knowledge. The latest progress of 3D printing technologies on the fabrication and function of nerve scaffolds are emphatically discussed, including inkjet, extension-based, stereolithography, and projection-based printing. The advanced application of 3D-printed nerve constructs in peripheral nerve regeneration and spinal cord injury repair are emphasized, which can provide some new ideas for the tissue engineering nerve repair and regeneration.
Bionic Intelligent Interaction Helmet: A Multifunctional-Design Anxiety-Alleviation Device Controlled by STM32
Due to accelerated urbanization, modern urban residents are facing increasing life pressures. Many citizens are experiencing situational aversion in daily commuting, and the deterioration in the traffic environment has led to psychological distress of varying degrees among urban dwellers. Cyclists, who account for about 7% of urban commuters, lack a sense of belonging in the urban space and experience significant deficiencies in the corresponding urban infrastructure, which causes more people to face significant barriers to choosing cycling as a mode of transportation. To address the aforementioned issues, this study proposes a bionic intelligent interaction helmet (BIIH) designed and validated based on the principles of bionics, which has undergone morphological design and structural validation. Constructed around the STM32-embedded development board, the BIIH is an integrated smart cycling helmet engineered to perceive environmental conditions and enable both human–machine interactions and environment–machine interactions. The system incorporates an array of sophisticated electronic components, including temperature and humidity sensors; ultrasonic sensors; ambient light sensors; voice recognition modules; cooling fans; LED indicators; and OLED displays. Additionally, the device is equipped with a mobile power supply, enhancing its portability and ensuring operational efficacy under dynamic conditions. Compared with conventional helmets designed for analogous purposes, the BIIH offers four distinct advantages. Firstly, it enhances the wearer’s environmental perception, thereby improving safety during operation. Secondly, it incorporates a real-time interaction function that optimizes the cycling experience while mitigating psychological stress. Thirdly, validated through bionic design principles, the BIIH exhibits increased specific stiffness, enhancing its structural integrity. Finally, the device’s integrated power and storage capabilities render it portable, autonomous, and adaptable, facilitating iterative improvements and fostering self-sustained development. Collectively, these features establish the BIIH as a methodological and technical foundation for exploring novel research scenarios and prospective applications.