Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
293
result(s) for
"biotic homogenization"
Sort by:
Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas
by
Poff, N. LeRoy
,
Olden, Julian D.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
aquatic ecosystems
2004
Biotic homogenization, the process of gradual replacement of native biotas by nonindigeous and locally expanding nonnative species, is rapidly diminishing the regional distinctiveness of global terrestrial and aquatic ecosystems. Although the empirical study of biotic homogenization is substantial and growing, the mechanisms underlying its dynamics remain poorly understood. We recently developed a theoretical model that predicts levels of biotic homogenization or differentiation (i.e., decreased community similarity) according to a series of distinct mechanisms that describe the outcomes of various interactions between native species, nonnative species, and the environment. Here, we test this model using empirical data for freshwater fish faunas in the United States at three spatial scales: the entire continent, Zoogeographic provinces in California, and watersheds within these provinces. Our analysis reveals that, in general, mechanisms depicting widespread introductions of cosmopolitan species and either no or differential spatial patterns of native-species extirpations explain fish-community homogenization across multiple spatial scales. Our results also highlight the potential effect of spatial grain on the perceived importance of different invasion-extinction scenarios shaping patterns of homogenization and differentiation. Next, we discuss the utility of the model for providing insight into the dominant ecological processes likely driving the homogenization of other major taxonomic groups that currently lack quantitative estimates of community change. Our study is the first to quantitatively examine the relative importance of different ecological mechanisms that can generate observed patterns of biotic homogenization. Using this model may allow advance prediction of future patterns of homogenization by explicitly considering underlying ecological processes and mechanisms.
Journal Article
Biotic homogenization destabilizes ecosystem functioning by decreasing spatial asynchrony
by
Jentsch, Anke
,
Polley, H. Wayne
,
Lepš, Jan
in
Abiotic factors
,
Biodiversity
,
biotic homogenization
2021
Our planet is facing significant changes of biodiversity across spatial scales. Although the negative effects of local biodiversity (α diversity) loss on ecosystem stability are well documented, the consequences of biodiversity changes at larger spatial scales, in particular biotic homogenization, that is, reduced species turnover across space (β diversity), remain poorly known. Using data from 39 grassland biodiversity experiments, we examine the effects of β diversity on the stability of simulated landscapes while controlling for potentially confounding biotic and abiotic factors. Our results show that higher β diversity generates more asynchronous dynamics among local communities and thereby contributes to the stability of ecosystem productivity at larger spatial scales. We further quantify the relative contributions of α and β diversity to ecosystem stability and find a relatively stronger effect of α diversity, possibly due to the limited spatial scale of our experiments. The stabilizing effects of both α and β diversity lead to a positive diversity–stability relationship at the landscape scale. Our findings demonstrate the destabilizing effect of biotic homogenization and suggest that biodiversity should be conserved at multiple spatial scales to maintain the stability of ecosystem functions and services.
Journal Article
Evidence of evolutionary homogenization of bird communities in urban environments across Europe
by
Ibáñez-Álamo, Juan Diego
,
Jokimäki, Jukka
,
Tryjanowski, Piotr
in
Biotic homogenization
,
bird species richness
,
Birds
2016
Aim: The process of urbanization can lead to specialist species being replaced by generalist species in space and time, increasing similarity among bird communities. This phenomenon is termed biotic homogenization and is directly related to taxonomic and functional diversity. However, the effects of urbanization on phylogenetic diversity remain unclear. Our study addresses the effects of the process of urbanization on the evolutionary distinctiveness (a quantitative measure of the genetic or evolutionary uniqueness of species) of bird communities. Location: Europe. Methods: Mixed models were used to compare the effects of urbanization on the evolutionary distinctiveness of bird communities in rural and urban environments in six different European cities from different ecoregions. Results: Our study presents unique large-scale evidence of a negative impact of urban environments on the evolutionary uniqueness of birds. Compared with bird communities in rural environments, bird communities in urban environments have lower average evolutionary distinctiveness in all countries, independent of ecoregion, and these values are unrelated to the taxonomic diversity present in each country. Main conclusions: Our findings provide important information on the spectrum of effects on global biodiversity of changes in land use related to the process of urbanization. Therefore, urban environments are a factor of concern for maintaining diversity across the tree of life of birds, and we suggest that urbanization planning could help buffer against extreme loss of phylogenetic diversity caused by this process.
Journal Article
Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China
by
Ordonez, Alejandro
,
Svenning, Jens-Christian
,
Chen, Guo-Ke
in
Agricultural land
,
Anthropogenic factors
,
Biological Sciences
2019
Human activities have shaped large-scale distributions of many species, driving both range contractions and expansions. Species differ naturally in range size, with small-range species concentrated in particular geographic areas and potentially deviating ecologically from widespread species. Hence, species’ responses to human activities may be influenced by their geographic range sizes, but if and how this happens are poorly understood. Here, we use a comprehensive distribution database and species distribution modeling to examine if and how human activities have affected the extent to which 9,701 vascular plants fill their climatic potential ranges in China. We find that narrow-ranged species have lower range filling and widespread species have higher range filling in the human-dominated southeastern part of China, compared with their counterparts distributed in the less human-influenced northwestern part. Variations in range filling across species and space are strongly associated with indicators of human activities (human population density, human footprint, and proportion of cropland) even after controlling for alternative drivers. Importantly, narrow-ranged and widespread species show negative and positive range-filling relationships to these human indicators, respectively. Our results illustrate that floras risk biotic homogenization as a consequence of anthropogenic activities, with narrow-ranged species becoming replaced by widespread species. Because narrow-ranged species are more numerous than widespread species in nature, negative impacts of human activities will be prevalent. Our findings highlight the importance of establishing more protected areas and zones of reduced human activities to safeguard the rich flora of China.
Journal Article
Urban biotic homogenization
2022
Urbanization is restructuring ecosystems at an unprecedented pace, with complex and profound consequences for life on Earth. One of the hypothesized trajectories of urban ecosystems and species communities is biotic homogenization, possibly leading to very similar species assemblages in cities across the globe. Urbanization can, however, also have the opposite effect: biotic diversification, with cities, at least at the local scale, becoming biologically more diverse, mainly as a consequence of high species introduction rates and habitat diversification. Applying the hierarchy-of-hypotheses approach, we systematically map and structure the comprehensive body of literature on the urban biotic homogenization (UBH) hypothesis, comprising 225 individual studies (i.e., tests of the hypothesis) retrieved from 145 publications. The UBH hypothesis is studied at multiple levels with a multitude of approaches and underlying assumptions. We show that UBH is generally used with two very different connotations: about half of the studies investigated a potential increase in community similarity across cities, whereas the other half investigated biotic homogenization within cities, the latter being supported more frequently. We also found strong research biases: (1) a taxonomic bias towards birds and plants, (2) a bias towards small and medium distances (<5000 km) in comparisons across cities, (3) a dominance of studies substituting space for time versus true temporal studies, (4) a strong focus on terrestrial versus aquatic systems, (5) more extraurban (including periurban) areas than natural or rural ecosystems for comparison to urban systems, (6) a bias towards taxonomic versus functional, phylogenetic, and temporal homogenization, and (7) more studies undertaken in Europe and North America than in other continents. The overall level of empirical support for the UBH hypothesis was mixed, with 55% of the studies reporting supporting evidence. Results significantly differed when a natural/nature reserve, an extraurban, or rural/agricultural area served as reference to infer biotic homogenization, with homogenization being detected least frequently when urban systems were compared to agricultural, i.e., other anthropogenically influenced, study sites. We provide an evidence map and a bibliographic network and identify key references on UBH with the goal to enhance accessibility and orientation for future research on this topic.
Journal Article
Range size predicts the risk of local extinction from habitat loss
by
Navarro, Laetitia M.
,
Staude, Ingmar R.
,
Pereira, Henrique M.
in
Biodiversity
,
biotic homogenization
,
Endangered & extinct species
2020
Aim The geographical range size of species is a strong predictor of vulnerability to global extinction. However, it remains unclear whether range size is also a good predictor of extinction risk at much smaller scales. Here, we reconstruct biodiversity time series to ask whether species with small ranges have declined preferentially with habitat loss at the local scale. Location Global. Time period 1500–2015. Major taxa studied Vascular plants. Method We collated 70 million occurrence records of 180,000 species of vascular plants from three biodiversity data‐sharing networks. We combined these with data on changes in global land use to find locations (0.25° grid cells) with biodiversity data before and after loss of natural habitat. First, we examined the change in community median range size before and after habitat loss. Second, we quantified the probabilities of local persistence of small‐ and large‐ranged species at different levels of habitat loss. Results Community median range size was higher after habitat loss, on average. Species with small ranges had lower probabilities of persistence than species with large ranges at already moderate habitat loss (≤50%). Main conclusions The loss of natural habitat has a differential effect on the local extinction risk of species with different range sizes. Given that species with small ranges decline preferentially, habitat loss can create a linkage between temporal and spatial species turnover, in that changes within communities decrease compositional differences between communities.
Journal Article
global spread of crop pests and pathogens
by
Bebber, Daniel P.
,
Gurr, Sarah J.
,
Holmes, Timothy
in
Agriculture
,
Agronomy. Soil science and plant productions
,
Animal and plant ecology
2014
AIM: To describe the patterns and trends in the spread of crop pests and pathogens around the world, and determine the socioeconomic, environmental and biological factors underlying the rate and degree of redistribution of crop‐destroying organisms. LOCATION: Global. METHODS: Current country‐ and state‐level distributions of 1901 pests and pathogens and historical observation dates for 424 species were compared with potential distributions based upon distributions of host crops. The degree of ‘saturation’, i.e. the fraction of the potential distribution occupied, was related to pest type, host range, crop production, climate and socioeconomic variables using linear models. RESULTS: More than one‐tenth of all pests have reached more than half the countries that grow their hosts. If current trends continue, many important crop‐producing countries will be fully saturated with pests by the middle of the century. While dispersal increases with host range overall, fungi have the narrowest host range but are the most widely dispersed group. The global dispersal of some pests has been rapid, but pest assemblages remain strongly regionalized and follow the distributions of their hosts. Pest assemblages are significantly correlated with socioeconomics, climate and latitude. Tropical staple crops, with restricted latitudinal ranges, tend to be more saturated with pests and pathogens than temperate staples with broad latitudinal ranges. We list the pests likely to be the most invasive in coming years. MAIN CONCLUSIONS: Despite ongoing dispersal of crop pests and pathogens, the degree of biotic homogenization of the globe remains moderate and regionally constrained, but is growing. Fungal pathogens lead the global invasion of agriculture, despite their more restricted host range. Climate change is likely to influence future distributions. Improved surveillance would reveal greater levels of invasion, particularly in developing countries.
Journal Article
Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects
2019
Aim We test whether urbanization drives biotic homogenization. We hypothesize that declines in abundance and species diversity of aerial insects are exacerbated by the urbanization‐driven loss of species with low habitat generalism, mobility and warm‐adaptedness. We predict this homogenization to be more pronounced for nocturnal taxa, and at wider scales for mobile taxa. Location Belgium. Time period Summers 2014–2015. Major taxa studied Lepidoptera. Methods We compare communities along urbanization gradients using a shared, replicated and nested sampling design, in which butterflies were counted within 81 grassland and macro‐moths light‐trapped in 12 woodland sites. We quantify taxonomic and functional community composition, the latter via community‐weighted means and variation of species‐specific traits related to specialization, mobility and thermophily. Using linear regression models, variables are analysed in relation to site‐specific urbanization values quantified at seven scales (50–3,200 m radii). At best‐fitting scales, we test for taxonomic homogenization. Results With increasing urbanization, abundance, species richness and Shannon diversity severely declined, with butterfly and macro‐moth declines due to local‐ versus landscape‐scale urbanization (200 vs. 800–3,200 m radii, respectively). While taxonomic homogenization was absent for butterflies, urban macro‐moth communities displayed higher nestedness than non‐urban communities. Overall, communities showed mean shifts towards generalist, mobile and thermophilous species, displaying trait convergence too. These functional trait models consistently fit best with urbanization quantified at local scales (100–200 m radii) for butterfly communities, and at local to wider landscape scales (200–800 m radii) for macro‐moth communities. Main conclusions Urban communities display functional homogenization that follows urbanization at scales linked to taxon‐specific mobility. Light pollution may explain why homogenization was more pronounced for the nocturnal taxon. We discuss that urbanization is likely to impact flying insect communities across the globe, but also that impacts on their ecosystem functions and services could be mitigated via multi‐scale implementation of urban green infrastructure.
Journal Article
Pattern and process of biotic homogenization in the New Pangaea
by
Lockwood, Julie L.
,
Baiser, Benjamin
,
Olden, Julian D.
in
Analysis of Variance
,
Animals
,
Beta Diversity
2012
Human activities have reorganized the earth's biota resulting in spatially disparate locales becoming more or less similar in species composition over time through the processes of biotic homogenization and biotic differentiation, respectively. Despite mounting evidence suggesting that this process may be widespread in both aquatic and terrestrial systems, past studies have predominantly focused on single taxonomic groups at a single spatial scale. Furthermore, change in pairwise similarity is itself dependent on two distinct processes, spatial turnover in species composition and changes in gradients of species richness. Most past research has failed to disentangle the effect of these two mechanisms on homogenization patterns. Here, we use recent statistical advances and collate a global database of homogenization studies (20 studies, 50 datasets) to provide the first global investigation of the homogenization process across major faunal and floral groups and elucidate the relative role of changes in species richness and turnover. We found evidence of homogenization (change in similarity ranging from −0.02 to 0.09) across nearly all taxonomic groups, spatial extent and grain sizes. Partitioning of change in pairwise similarity shows that overall change in community similarity is driven by changes in species richness. Our results show that biotic homogenization is truly a global phenomenon and put into question many of the ecological mechanisms invoked in previous studies to explain patterns of homogenization.
Journal Article
A synthesis of land use impacts on stream biodiversity across metrics and scales
by
Blowes, Shane A.
,
Chase, Jonathan M.
,
Melo, Adriano S.
in
agriculture
,
Anthropogenic factors
,
beta diversity
2021
While land use intensification is a major driver of biodiversity change in streams, the nature of such changes, and at which scales they occur, have not been synthesized. To synthesize how land use change has altered multiple components of stream biodiversity across scales, we compiled data from 37 studies where comparative data were available for species’ total and relative abundances from multiple locations including reference (less impacted) streams to those surrounded by different land use types (urban, forestry, and agriculture). We found that each type of land use reduced multiple components of within-stream biodiversity across scales, but that urbanization consistently had the strongest effects. However, we found that β-diversity among streams in modified landscapes did not differ from β-diversity observed among reference streams, suggesting little evidence for biotic homogenization. Nevertheless, assemblage composition did experience considerable species turnover between reference and modified streams. Our results emphasize that to understand how anthropogenic factors such as land use alter biodiversity, multiple components of biodiversity within and among sites must be simultaneously considered at multiple scales.
Journal Article