Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
18,835 result(s) for "blight"
Sort by:
Rot : a history of the Irish famine
In the nineteenth century, as Britain became the world's most powerful industrial empire, Ireland starved. The Great Famine fractured long-held assumptions about political economy and 'civilisation', threatening disorder in Britain itself. Ireland was a laboratory for empire, shaping British ideas about colonisation, population, ecology and work. Scanlan reinterprets the history of this time and the result is a revelatory account of the Irish Great Famine (1845-1851).
Understanding sheath blight resistance in rice: the road behind and the road ahead
Summary Rice sheath blight disease, caused by the basidiomycetous necrotroph Rhizoctonia solani, became one of the major threats to the rice cultivation worldwide, especially after the adoption of high‐yielding varieties. The pathogen is challenging to manage because of its extensively broad host range and high genetic variability and also due to the inability to find any satisfactory level of natural resistance from the available rice germplasm. It is high time to find remedies to combat the pathogen for reducing rice yield losses and subsequently to minimize the threat to global food security. The development of genetic resistance is one of the alternative means to avoid the use of hazardous chemical fungicides. This review mainly focuses on the effort of better understanding the host–pathogen relationship, finding the gene loci/markers imparting resistance response and modifying the host genome through transgenic development. The latest development and trend in the R. solani–rice pathosystem research with gap analysis are provided.
The Irish Potato Famine : a cause-and-effect investigation
\"Discover how the great Irish potato famine affected the country's citizens through gripping personal accounts and striking visuals. Explore the way people's choices and actions affected the disaster through the lens of cause and effect.\"-- Provided by publisher.
A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens
Peter Balint-Kurti, Qin Yang and colleagues report that ZmCCoAOMT2 , which encodes a caffeoyl-CoA O -methyltransferase, is a gene within the quantitative trait locus qMdr 9.02 , which confers resistance to southern leaf blight and gray leaf spot. Their findings suggest that resistance might be caused by differences in levels of lignin and other metabolites in the phenylpropanoid pathway. Alleles that confer multiple disease resistance (MDR) are valuable in crop improvement, although the molecular mechanisms underlying their functions remain largely unknown. A quantitative trait locus, qMdr 9.02 , associated with resistance to three important foliar maize diseases—southern leaf blight, gray leaf spot and northern leaf blight—has been identified on maize chromosome 9. Through fine-mapping, association analysis, expression analysis, insertional mutagenesis and transgenic validation, we demonstrate that ZmCCoAOMT2 , which encodes a caffeoyl-CoA O -methyltransferase associated with the phenylpropanoid pathway and lignin production, is the gene within qMdr 9.02 conferring quantitative resistance to both southern leaf blight and gray leaf spot. We suggest that resistance might be caused by allelic variation at the level of both gene expression and amino acid sequence, thus resulting in differences in levels of lignin and other metabolites of the phenylpropanoid pathway and regulation of programmed cell death.
Identification of QTL associated with plant vine characteristics and infection response to late blight, early blight, and Verticillium wilt in a tetraploid potato population derived from late blight-resistant Palisade Russet
Potato late blight (causal agent Phytophthora infestans ) is a disease of potatoes with economic importance worldwide. Control is primarily through field monitoring and the application of fungicides. Control of late blight with fungicides and host plant resistance is difficult, with documented cases of such control measures failing with the advent of new pathotypes of P. infestans . To better understand host plant resistance and to develop more durable late blight resistance, Quantitative Trait Locus/Loci (QTL) analysis was conducted on a tetraploid mapping population derived from late blight-resistant potato cultivar Palisade Russet. Additionally, QTL analyses for other traits such as Verticillium wilt and early blight resistance, vine size and maturity were performed to identify a potential relationship between multiple traits and prepare genetic resources for molecular markers useful in breeding programs. For this, one hundred ninety progenies from intercrossing Palisade Russet with a late blight susceptible breeding clone (ND028673B-2Russ) were assessed. Two parents and progenies were evaluated over a two-year period for response to infection by the US-8 genotype of P. infestans in inoculated field screenings in Corvallis, Oregon. In Aberdeen, Idaho, the same mapping population was also evaluated for phenotypic response to early blight and Verticillium wilt, and vine size and maturity in a field over a two-year period. After conducting QTL analyses with those collected phenotype data, it was observed that chromosome 5 has a significant QTL for all five traits. Verticillium wilt and vine maturity QTL were also observed on chromosome 1, and vine size QTL was also found on chromosomes 3 and 10. An early blight QTL was also detected on chromosome 2. The QTL identified in this study have the potential for converting into breeder-friendly molecular markers for marker-assisted selection.
Rhizoctonia solani Kühn Pathophysiology: Status and Prospects of Sheath Blight Disease Management in Rice
Sheath blight caused by necrotrophic fungus Rhizoctonia solani Kühn is one of the most serious diseases of rice. Use of high yielding semi dwarf cultivars with dense planting and high dose of nitrogenous fertilizers accentuates the incidence of sheath blight in rice. Its diverse host range and ability to remain dormant under unfavorable conditions make the pathogen more difficult to manage. As there are no sources of complete resistance, management through chemical control has been the most adopted method for sheath blight management. In this review, we provide an up-to-date comprehensive description of host-pathogen interactions, various control measures such as cultural, chemical, and biological as well as utilizing host plant resistance. The section on utilizing host plant resistance includes identification of resistant sources, mapping QTLs and their validation, identification of candidate gene(s) and their introgression through marker-assisted selection. Advances and prospects of sheath blight management through biotechnological approaches such as overexpression of genes and gene silencing for transgenic development against R. solani are also discussed.
Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome‐wide association study
Summary Rice sheath blight (RSB) is an economically significant disease affecting rice yield worldwide. Genetic resistance to RSB is associated with multiple minor genes, with each providing a minor phenotypic effect, but the underlying dominant resistance genes remain unknown. A genome‐wide association study (GWAS) of 259 diverse rice varieties, with genotypes based on a single nucleotide polymorphism (SNP) and haplotype, was conducted to assess their sheath blight reactions at three developmental stages (seedlings, tillering and booting). A total of 653 genes were correlated with sheath blight resistance, of which the disease resistance protein RPM1 (OsRSR1) and protein kinase domain‐containing protein (OsRLCK5) were validated by overexpression and knockdown assays. We further found that the coiled‐coil (CC) domain of OsRSR1 (OsRSR1‐CC) and full‐length OsRLCK5 interacted with serine hydroxymethyltransferase 1 (OsSHM1) and glutaredoxin (OsGRX20), respectively. It was found that OsSHM1, which has a role in the reactive oxygen species (ROS) burst, and OsGRX20 enhanced the antioxidation ability of plants. A regulation model of the new RSB resistance though the glutathione (GSH)‐ascorbic acid (AsA) antioxidant system was therefore revealed. These results enhance our understanding of RSB resistance mechanisms and provide better gene resources for the breeding of disease resistance in rice.
Recent advances in the population biology and management of maize foliar fungal pathogens Exserohilum turcicum, Cercospora zeina and Bipolaris maydis in Africa
Maize is the most widely cultivated and major security crop in sub-Saharan Africa. Three foliar diseases threaten maize production on the continent, namely northern leaf blight, gray leaf spot, and southern corn leaf blight. These are caused by the fungi Exserohilum turcicum , Cercospora zeina , and Bipolaris maydis , respectively. Yield losses of more than 10% can occur if these pathogens are diagnosed inaccurately or managed ineffectively. Here, we review recent advances in understanding the population biology and management of the three pathogens, which are present in Africa and thrive under similar environmental conditions during a single growing season. To effectively manage these pathogens, there is an increasing adoption of breeding for resistance at the small-scale level combined with cultural practices. Fungicide usage in African cropping systems is limited due to high costs and avoidance of chemical control. Currently, there is limited knowledge available on the population biology and genetics of these pathogens in Africa. The evolutionary potential of these pathogens to overcome host resistance has not been fully established. There is a need to conduct large-scale sampling of isolates to study their diversity and trace their migration patterns across the continent.