Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
474 result(s) for "bone marrow-derived mesenchymal stem cells"
Sort by:
Mesenchymal stem cell‐derived CXCL16 promotes progression of gastric cancer cells by STAT3‐mediated expression of Ror1
Bone marrow‐derived mesenchymal stem or stromal cells (MSC) have been shown to be recruited to various types of tumor tissues, where they interact with tumor cells to promote their proliferation, survival, invasion and metastasis, depending on the type of the tumor. We have previously shown that Ror2 receptor tyrosine kinase and its ligand, Wnt5a, are expressed in MSC, and Wnt5a‐Ror2 signaling in MSC induces expression of CXCL16, which, in turn, promotes proliferation of co–cultured MKN45 gastric cancer cells via the CXCL16‐CXCR6 axis. However, it remains unclear how CXCL16 regulates proliferation of MKN45 cells. Here, we show that knockdown of CXCL16 in MSC by siRNA suppresses not only proliferation but also migration of co–cultured MKN45 cells. We also show that MSC‐derived CXCL16 or recombinant CXCL16 upregulates expression of Ror1 through activation of STAT3 in MKN45 cells, leading to promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, co–injection of MSC with MKN45 cells in nude mice promoted tumor formation in a manner dependent on expression of Ror1 in MKN45 cells, and anti–CXCL16 neutralizing antibody suppressed tumor formation of MKN45 cells co–injected with MSC. These results suggest that CXCL16 produced through Ror2‐mediated signaling in MSC within the tumor microenvironment acts on MKN45 cells in a paracrine manner to activate the CXCR6‐STAT3 pathway, which, in turn, induces expression of Ror1 in MKN45 cells, thereby promoting tumor progression. We show that CXCL16 derived from human bone marrow‐derived mesenchymal stem cells (MSC) induces expression of Ror1 through activation of STAT3 in MKN45 gastric cancer cells, resulting in promotion of proliferation and migration of MKN45 cells in vitro. Furthermore, tumor formation of MKN45 cells in nude mice can be accelerated by co–injection of MSC, in a manner that is inhibited by anti–CXCL16 neutralizing antibody and is dependent on Ror1 expression in MKN45 cells. These findings indicate that CXCL16 derived from MSC induces expression of Ror1 through activation of the STAT3 pathway in MKN45 cells, leading to the promotion of tumor formation.
Osthole enhances the immunosuppressive effects of bone marrow‐derived mesenchymal stem cells by promoting the Fas/FasL system
Thanks to the advantages of easy harvesting and escape from immune rejection, autologous bone marrow‐derived mesenchymal stem cells (BMSCs) are promising candidates for immunosuppressive therapy against inflammation and autoimmune diseases. However, the therapy is still challenging because the immunomodulatory properties of BMSCs are always impaired by immunopathogenesis in patients. Because of its reliable and extensive biological activities, osthole has received increased clinical attention. In this study, we found that BMSCs derived from osteoporosis donors were ineffective in cell therapy for experimental inflammatory colitis and osteoporosis. In vivo and in vitro tests showed that because of the down‐regulation of Fas and FasL expression, the ability of osteoporotic BMSCs to induce T‐cell apoptosis decreased. Through the application of osthole, we successfully restored the immunosuppressive ability of osteoporotic BMSCs and improved their treatment efficacy in experimental inflammatory colitis and osteoporosis. In addition, we found the immunomodulatory properties of BMSCs were enhanced after osthole pre‐treatment. In this study, our data highlight a new approach of pharmacological modification (ie osthole) to improve the immune regulatory performance of BMSCs from a healthy or inflammatory microenvironment. The development of targeted strategies to enhance immunosuppressive therapy using BMSCs may be significantly improved by these findings.
Hypoxic preconditioned mesenchymal stem cells ameliorate rat brain injury after cardiopulmonary resuscitation by suppressing neuronal pyroptosis
Cardiac arrest (CA) can result in cerebral ischaemia–reperfusion injury and poor neurological outcomes. While bone marrow‐derived mesenchymal stem cells (BMSCs) have been shown to have protective effects in brain ischaemic disease, their efficacy can be reduced by the poor oxygen environment. In this study, we investigated the neuroprotective effects of hypoxic preconditioned BMSCs (HP‐BMSCs) and normoxic BMSCs (N‐BMSCs) in a cardiac arrest rat model by examining their ability to ameliorate cell pyroptosis. The mechanism underlying the process was also explored. Cardiac arrest was induced in rats for 8 min and surviving rats received 1 × 106 normoxic/hypoxic BMSCs or PBS via intracerebroventricular (ICV) transplantation. Neurological function of rats was evaluated using neurological deficit scores (NDSs) and examined for brain pathology. Serum S100B and neuron‐specific enolase (NSE) levels and cortical proinflammatory cytokines were measured to evaluate brain injury. Pyroptosis‐related proteins in the cortex after cardiopulmonary resuscitation (CPR) were measured using western blotting and immunofluorescent staining. Transplanted BMSCs were tracked using bioluminescence imaging. Results showed significantly better neurological function and neuropathological damage after transplantation with HP‐BMSCs. In addition, HP‐BMSCs reduced levels of pyroptosis‐related proteins in the rat cortex after CPR and significantly reduced levels of biomarkers for brain injury. Mechanistically, HP‐BMSCs alleviated brain injury by reducing the expressions of HMGB1, TLR4, NF‐κB p65, p38 MAPK and JNK in the cortex. Our study demonstrated that hypoxic preconditioning could enhance the efficacy of BMSCs in alleviating post‐resuscitation cortical pyroptosis. This effect may be related to the regulation of the HMGB1/TLR4/NF‐κB, MAPK signalling pathways.
Cav1.2 regulates osteogenesis of bone marrow‐derived mesenchymal stem cells via canonical Wnt pathway in age‐related osteoporosis
Aims Age‐related bone mass loss is one of the most prevalent diseases that afflict the elderly population. The decline in the osteogenic differentiation capacity of bone marrow‐derived mesenchymal stem cells (BMMSCs) is regarded as one of the central mediators. Voltage‐gated Ca2+ channels (VGCCs) play an important role in the regulation of various cell biological functions, and disruption of VGCCs is associated with several age‐related cellular characteristics and systemic symptoms. However, whether and how VGCCs cause the decreased osteogenic differentiation abilities of BMMSCs have not been fully elucidated. Methods Voltage‐gated Ca2+ channels related genes were screened, and the candidate gene was determined in several aging models. Functional role of determined channel on osteogenic differentiation of BMMSCs was investigated through gain and loss of function experiments. Molecular mechanism was explored, and intervention experiments in vivo and in vitro were performed. Results We found that Cav1.2 was downregulated in these aging models, and downregulation of Cav1.2 in Zmpste24−/− BMMSCs contributed to compromised osteogenic capacity. Mechanistically, Cav1.2 regulated the osteogenesis of BMMSCs through canonical Wnt/β‐catenin pathway. Moreover, upregulating the activity of Cav1.2 mitigated osteoporosis symptom in Zmpste24−/− mice. Conclusion Impaired osteogenic differentiation of Zmpste24−/− BMMSCs can be partly attributed to the decreased Cav1.2 expression, which leads to the inhibition of canonical Wnt pathway. Bay K8644 treatment could be an applicable approach for treating age‐related bone loss by ameliorating compromised osteogenic differentiation capacity through targeting Cav1.2 channel. Decreased Cav1.2 expression contributes to defective osteogenic differentiation of Zmpste24−/− BMMSCs by inhibiting Wnt/β‐catenin signaling, and Bay K8644 can ameliorate osteoporosis symptom through targeting Cav1.2 channel.
Bone marrow‐derived mesenchymal stem cells promote invasiveness and transendothelial migration of osteosarcoma cells via a mesenchymal to amoeboid transition
There is growing evidence to suggest that bone marrow‐derived mesenchymal stem cells (BM‐MSCs) are key players in tumour stroma. Here, we investigated the cross‐talk between BM‐MSCs and osteosarcoma (OS) cells. We revealed a strong tropism of BM‐MSCs towards these tumour cells and identified monocyte chemoattractant protein (MCP)‐1, growth‐regulated oncogene (GRO)‐α and transforming growth factor (TGF)‐β1 as pivotal factors for BM‐MSC chemotaxis. Once in contact with OS cells, BM‐MSCs trans‐differentiate into cancer‐associated fibroblasts, further increasing MCP‐1, GRO‐α, interleukin (IL)‐6 and IL‐8 levels in the tumour microenvironment. These cytokines promote mesenchymal to amoeboid transition (MAT), driven by activation of the small GTPase RhoA, in OS cells, as illustrated by the in vitro assay and live imaging. The outcome is a significant increase of aggressiveness in OS cells in terms of motility, invasiveness and transendothelial migration. In keeping with their enhanced transendothelial migration abilities, OS cells stimulated by BM‐MSCs also sustain migration, invasion and formation of the in vitro capillary network of endothelial cells. Thus, BM‐MSC recruitment to the OS site and the consequent cytokine‐induced MAT are crucial events in OS malignancy. Evidence suggests bone marrow‐derived mesenchymal stem cells (BM‐MSCs) are key players in tumor stroma. We investigated cross‐talk between BM‐MSCs and osteosarcoma (OS) cells. Upon contact with OS cells BM‐MSCs transdifferentiate into cancer‐associated fibroblasts, increasing pivotal chemotaxis factors MCP‐1, GRO‐α, IL‐6 and IL‐8 levels in the tumor microenvironment. This promotes GTPase RhoA driven mesenchymal to amoeboid transition (MAT) resulting in increased aggressiveness in OS cells in terms of motility, invasiveness, and transendothelial migration. BM‐MSCs recruitment and the consequent cytokine‐induced MAT are crucial events in OS malignancy.
Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers
Aims: At present, clinical success of hepatocyte transplantation as an alternative to whole liver transplantation is hampered by the limited availability of suitable donor organs for the isolation of transplantable hepatocytes. Hence, novel cell sources are required to deliver hepatocytes of adequate quality for clinical use. Mesenchymal stem cells (MSCs) from human bone marrow may have the potential to differentiate into hepatocytes in vitro and in vivo. Methods: Isolated MSCs were selected by density gradient centrifugation and plastic adherence, differentiated in the presence of human hepatocyte growth medium and transplanted in immunodeficient Pfp/Rag2 mice. Results: Here, we demonstrate that human MSCs gain in vitro the characteristic morphology and function of hepatocytes in response to specified growth factors. Specifically, preconditioned MSCs store glycogen, synthesise urea and feature the active hepatocyte-specific gene promoter of phosphoenolpyruvate carboxykinase (PCK1). After transplantation into livers of immunodeficient mice, preconditioned MSCs engraft predominantly in the periportal portion of the liver lobule. In situ, the cells continue to store glycogen and express PCK1, connexin32, albumin and the human hepatocyte-specific antigen HepPar1, indicating that the transplanted cells retain prominent qualities of hepatocytes after their regional integration. Conclusion: MSCs derived from human bone marrow may serve as a novel source for the propagation of hepatocyte-like cells suitable for cell therapy in liver diseases.
Proliferation and differentiation potential of human adipose‐derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures
Aging has less effect on adipose‐derived mesenchymal stem cells (ADSCs) than on bone marrow‐derived mesenchymal stem cells (BMSCs), but whether the fact holds true in stem cells from elderly patients with osteoporotic fractures is unknown. In this study, ADSCs and BMSCs of the same donor were harvested and divided into two age groups. Group A consisted of 14 young patients (36.4 ± 11.8 years old), and group B consisted of eight elderly patients (71.4 ± 3.6 years old) with osteoporotic fractures. We found that the doubling time of ADSCs from both age groups was maintained below 70 hrs, while that of BMSCs increased significantly with the number of passage. When ADSCs and BMSCs from the same patient were compared, there was a significant increase in the doubling time of BMSCs in each individual from passages 3 to 6. On osteogenic induction, the level of matrix mineralization of ADSCs from group B was comparable to that of ADSCs from group A, whereas BMSCs from group B produced least amount of mineral deposits and had a lower expression level of osteogenic genes. The p21 gene expression and senescence‐associated β‐galactosidase activity were lower in ADSCs compared to BMSCs, which may be partly responsible for the greater proliferation and differentiation potential of ADSCs. It is concluded that the proliferation and osteogenic differentiation of ADSCs were less affected by age and multiple passage than BMSCs, suggesting that ADSCs may become a potentially effective therapeutic option for cell‐based therapy, especially in elderly patients with osteoporosis.
Bone marrow‐derived mesenchymal stem cells promote Helicobacter pylori‐associated gastric cancer progression by secreting thrombospondin‐2
Objectives Bone marrow‐derived cells (BMDCs), especially mesenchymal stem cells (MSCs), may be involved in the development of Helicobacter pylori‐associated gastric cancer (GC) in mice, but the specific mechanism remains unclear, and evidence from human studies is lacking. Materials and Methods To verify the role of BM‐MSCs in H pylori‐associated GC, green fluorescent protein (GFP)‐labelled BM‐MSCs were transplanted into the subserosal layers of the stomach in a mouse model of chronic H pylori infection. Three months post‐transplantation, the mice were sacrificed, and the gastric tissues were subjected to histopathological and immunofluorescence analyses. In addition, we performed fluorescence in situ hybridization (FISH) and immunofluorescence analyses of gastric tissue from a female patient with H pylori infection and a history of acute myeloid leukaemia who received a BM transplant from a male donor. Results In mice with chronic H pylori infection, GFP‐labelled BM‐MSCs migrated from the serous layer to the mucosal layer and promoted GC progression. The BM‐MSCs differentiated into pan‐cytokeratin‐positive epithelial cells and α‐smooth muscle actin‐positive cancer‐associated fibroblasts (CAFs) by secreting the protein thrombospondin‐2. FISH analysis of gastric tissue from the female patient revealed Y‐chromosome‐positive cells. Immunofluorescence analyses further confirmed that Y‐chromosome‐positive cells showed positive BM‐MSCs marker. These results suggested that allogeneic BMDCs, including BM‐MSCs, can migrate to the stomach under chronic H pylori infection. Conclusions Taken together, these findings imply that BM‐MSCs participate in the development of chronic H pylori‐associated GC by differentiating into both gastric epithelial cells and CAFs. Bone marrow mesenchymal stem cells transplanted in mice with chronic H pylori infection gradually migrate from the subserosa to the mucosa and secret THBS2 protein to promote the occurrence and development of gastric cancer.
Bone marrow‐derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion‐induced lung injury
Autophagy, a type II programmed cell death, is essential for cell survival under stress, e.g. lung injury, and bone marrow‐derived mesenchymal stem cells (BM‐MSCs) have great potential for cell therapy. However, the mechanisms underlying the BM‐MSC activation of autophagy to provide a therapeutic effect in ischaemia/reperfusion‐induced lung injury (IRI) remain unclear. Thus, we investigate the activation of autophagy in IRI following transplantation with BM‐MSCs. Seventy mice were pre‐treated with BM‐MSCs before they underwent lung IRI surgery in vivo. Human pulmonary micro‐vascular endothelial cells (HPMVECs) were pre‐conditioned with BM‐MSCs by oxygen‐glucose deprivation/reoxygenation (OGD) in vitro. Expression markers for autophagy and the phosphoinositide 3‐kinase/protein kinase B (PI3K/Akt) signalling pathway were analysed. In IRI‐treated mice, administration of BM‐MSCs significantly attenuated lung injury and inflammation, and increased the level of autophagy. In OGD‐treated HPMVECs, co‐culture with BM‐MSCs attenuated endothelial permeability by decreasing the level of cell death and enhanced autophagic activation. Moreover, administration of BM‐MSCs decreased the level of PI3K class I and p‐Akt while the expression of PI3K class III was increased. Finally, BM‐MSCs‐induced autophagic activity was prevented using the inhibitor LY294002. Administration of BM‐MSCs attenuated lung injury by improving the autophagy level via the PI3K/Akt signalling pathway. These findings provide further understanding of the mechanisms related to BM‐MSCs and will help to develop new cell‐based therapeutic strategies in lung injury.
A critical role of the KCa3.1 channel in mechanical stretch‐induced proliferation of rat bone marrow‐derived mesenchymal stem cells
Mechanical stimulation is an important factor regulating mesenchymal stem cell (MSC) functions such as proliferation. The Ca2+‐activated K+ channel, KCa3.1, is critically engaged in MSC proliferation but its role in mechanical regulation of MSC proliferation remains unknown. Here, we examined the KCa3.1 channel expression and its role in rat bone marrow‐derived MSC (BMSC) proliferation in response to mechanical stretch. Application of mechanical stretch stimulated BMSC proliferation via promoting cell cycle progression. Such mechanical stimulation up‐regulated the KCa3.1 channel expression and pharmacological or genetic inhibition of the KCa3.1 channel strongly suppressed stretch‐induced increase in cell proliferation and cell cycle progression. These results support that the KCa3.1 channel plays an important role in transducing mechanical forces to MSC proliferation. Our finding provides new mechanistic insights into how mechanical stimuli regulate MSC proliferation and also a viable bioengineering approach to improve MSC proliferation.