Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12,210
result(s) for
"bone morphogenetic proteins"
Sort by:
BMP signalling in skeletal development, disease and repair
2016
Key Points
Phylogenetic analysis indicates that the bone morphogenetic protein (BMP) pathway is ancient and highly conserved across the animal kingdom
Gene duplication and divergence has created a diverse matrix of BMP ligand–receptor pairs that achieve sophisticated control of signalling through variable activity profiles and functional redundancy
Members of the BMP superfamily affect almost all aspects of bone, cartilage and joint biology
Altered BMP signalling is a major underlying cause of human skeletal disorders
Modulation of BMP signalling is emerging as a promising therapeutic strategy for improving bone mass and bone quality, ameliorating diseases of skeletal overgrowth and repairing damage to bones and joints
Bone morphogenetic proteins (BMPs) have been implicated in almost all aspects of bone, cartilage and joint biology. Here, Valerie Salazar and colleagues discuss BMP superfamily signalling in the context of skeletal development and joint morphogenesis, and summarize the status of the BMP pathway as a therapeutic target for treating skeletal trauma and disease.
Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.
Journal Article
Inhibition of the BMP Signaling Pathway Ameliorated Established Clinical Symptoms of Experimental Autoimmune Encephalomyelitis
by
Calvo-Barreiro, Laura
,
Costa, Carme
,
Reverter-Vives, Gemma
in
Animals
,
Autoimmune diseases
,
Biomedical and Life Sciences
2020
Bone morphogenetic proteins (BMPs) are secreted growth factors that belong to the transforming growth factor beta superfamily. BMPs have been implicated in physiological processes, but they are also involved in many pathological conditions. Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system (CNS); however, its etiology remains elusive. Some evidence points to BMPs as important players in the pathogenesis of inflammatory and autoimmune disorders. In the present work, we studied the expression of BMP2, BMP4, BMP5, BMP6, BMP7, BMP type II receptor, and noggin in the immune system during different phases of experimental autoimmune encephalomyelitis (EAE). Major changes in the expression of BMPs took place in the initial phases of EAE. Indeed, those changes mainly affected BMP6 (whose expression was abrogated), BMP2, and BMP7 (whose expression was increased). In addition, we showed that in vivo inhibition of the BMP signaling pathway with small molecules ameliorated the already established clinical symptoms of EAE, as well as the CNS histopathological features. At the immune level, we observed an expansion of plasmacytoid dendritic cells (pDCs) in mice treated with small molecules that inhibit the BMP signaling pathway. pDCs could play an important role in promoting the expansion of antigen-specific regulatory T cells. Altogether, our data suggest a role for BMPs in early immune events that take place in myelin oligodendrocyte glycoprotein (MOG)-induced EAE. In addition, the clinical outcome of the disease was improved when the BMP signaling pathway was inhibited in mice that presented established EAE symptoms.
Journal Article
Glucose metabolism induced by Bmp signaling is essential for murine skeletal development
2018
Much of the mammalian skeleton originates from a cartilage template eventually replaced by bone via endochondral ossification. Despite much knowledge about growth factors and nuclear proteins in skeletal development, little is understood about the role of metabolic regulation. Here we report that genetic deletion of the glucose transporter Glut1 (Slc2a1), either before or after the onset of chondrogenesis in the limb, severely impairs chondrocyte proliferation and hypertrophy, resulting in dramatic shortening of the limbs. The cartilage defects are reminiscent to those caused by deficiency in Bmp signaling. Importantly, deletion of Bmpr1a in chondrocytes markedly reduces Glut1 levels in vivo, whereas recombinant BMP2 increases Glut1 mRNA and protein levels, boosting glucose metabolism in primary chondrocytes. Biochemical studies identify a Bmp-mTORC1-Hif1a signaling cascade resulting in upregulation of Glut1 in chondrocytes. The results therefore uncover a hitherto unknown connection between Bmp signaling and glucose metabolism in the regulation of cartilage development.
It is unclear how metabolic regulation affects development of the skeleton. Here, the authors show that deletion of the glucose transporter
Glut1
(
Slc2a1
) both prior to and following chondrogenesis in the mouse limb impairs chondrocyte proliferation and shortening of the limbs, modulated by BMP signaling.
Journal Article
Formation and characterization of BMP2/GDF5 and BMP4/GDF5 heterodimers
by
Czepnik, Magdalena
,
Kattamuri, Chandramohan
,
Nolan, Kristof
in
Affinity
,
Affinity chromatography
,
Analysis
2023
Background
Proteins of the TGFβ family, which are largely studied as homodimers, are also known to form heterodimers with biological activity distinct from their component homodimers. For instance, heterodimers of bone morphogenetic proteins, including BMP2/BMP7, BMP2/BMP6, and BMP9/BMP10, among others, have illustrated the importance of these heterodimeric proteins within the context of TGFβ signaling.
Results
In this study, we have determined that mature GDF5 can be combined with mature BMP2 or BMP4 to form BMP2/GDF5 and BMP4/GDF5 heterodimer. Intriguingly, this combination of a BMP2 or BMP4 monomer, which exhibit high affinity to heparan sulfate characteristic to the BMP class, with a GDF5 monomer with low heparan sulfate affinity produces a heterodimer with an intermediate affinity. Using heparin affinity chromatography to purify the heterodimeric proteins, we then determined that both the BMP2/GDF5 and BMP4/GDF5 heterodimers consistently signaled potently across an array of cellular and in vivo systems, while the activities of their homodimeric counterparts were more context dependent. These differences were likely driven by an increase in the combined affinities for the type 1 receptors, Alk3 and Alk6. Furthermore, the X-ray crystal structure of BMP2/GDF5 heterodimer was determined, highlighting the formation of two asymmetric type 1 receptor binding sites that are both unique relative to the homodimers.
Conclusions
Ultimately, this method of heterodimer production yielded a signaling molecule with unique properties relative to the homodimeric ligands, including high affinity to multiple type 1 and moderate heparan binding affinity.
Journal Article
Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis
by
Bosukonda, Dattatreyamurty
,
Tampe, Björn
,
Rusckowski, Mary
in
631/80/86
,
692/308/153
,
692/699/1585
2012
BMP7 has been previously shown to protect against renal fibrosis. Raghu Kalluri and his colleagues have now identified activin-like kinase 3 (Alk3) as the key co-receptor for BMP7 in the kidney and have identified an orally available, small-peptide agonist of Alk3 that reduces established fibrosis in five animal models of kidney injury.
Molecules associated with the transforming growth factor β (TGF-β) superfamily, such as bone morphogenic proteins (BMPs) and TGF-β, are key regulators of inflammation, apoptosis and cellular transitions. Here we show that the BMP receptor activin-like kinase 3 (Alk3) is elevated early in diseased kidneys after injury. We also found that its deletion in the tubular epithelium leads to enhanced TGF-β1–Smad family member 3 (Smad3) signaling, epithelial damage and fibrosis, suggesting a protective role for Alk3-mediated signaling in the kidney. A structure-function analysis of the BMP-Alk3–BMP receptor, type 2 (BMPR2) ligand-receptor complex, along with synthetic organic chemistry, led us to construct a library of small peptide agonists of BMP signaling that function through the Alk3 receptor. One such peptide agonist, THR-123, suppressed inflammation, apoptosis and the epithelial-to-mesenchymal transition program and reversed established fibrosis in five mouse models of acute and chronic renal injury. THR-123 acts specifically through Alk3 signaling, as mice with a targeted deletion for Alk3 in their tubular epithelium did not respond to therapy with THR-123. Combining THR-123 and the angiotensin-converting enzyme inhibitor captopril had an additive therapeutic benefit in controlling renal fibrosis. Our studies show that BMP signaling agonists constitute a new line of therapeutic agents with potential utility in the clinic to induce regeneration, repair and reverse established fibrosis.
Journal Article
Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis
by
Little, Shawn C.
,
Mullins, Mary C.
in
Activin Receptors - metabolism
,
Activin Receptors, Type I - genetics
,
Activin Receptors, Type I - metabolism
2009
Bone morphogenetic proteins (BMPs) regulate zebrafish dorsoventral patterning through two distinct receptor complexes. Surprisingly, BMPs function as an obligate heterodimer of BMP-2 and -7, while BMP homodimers are inactive.
Patterning the embryonic dorsoventral axis of both vertebrates and invertebrates requires signalling through bone morphogenetic proteins (BMPs)
1
. Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the
Drosophila melanogaster
embryo is controversial
2
,
3
, is generally inferred from cell culture studies and has not been investigated in vertebrates. Here, we demonstrate that dorsoventral patterning in zebrafish,
Danio rerio
, requires two classes of non-redundant type I BMP receptors, Alk3/6 and Alk8 (activin-like kinases 3/6 and 8). We show, under physiological conditions in the embryo, that these two type I receptor classes form a complex in a manner that depends on Bmp2 and Bmp7. We found that both Bmp2–7 heterodimers, as well as Bmp2 and Bmp7 homodimers, form in the embryo. However, only recombinant ligand heterodimers can activate BMP signalling in the early embryo, whereas a combination of Bmp2 and Bmp7 homodimers cannot. We propose that only heterodimers, signalling through two distinct classes of type I receptor, possess sufficient receptor affinity in an environment of extracellular antagonists to elicit the signalling response required for dorsoventral patterning.
Journal Article
Regeneration of fat cells from myofibroblasts during wound healing
by
Konopelski, Sara E.
,
Andl, Thomas
,
Ramirez, Ricardo N.
in
Adipocytes
,
Adipocytes - physiology
,
Amphibians
2017
Although regeneration through the reprogramming of one cell lineage to another occurs in fish and amphibians, it has not been observed in mammals. We discovered in the mouse that during wound healing, adipocytes regenerate from myofibroblasts, a cell type thought to be differentiated and nonadipogenic. Myofibroblast reprogramming required neogenic hair follicles, which triggered bone morphogenetic protein (BMP) signaling and then activation of adipocyte transcription factors expressed during development. Overexpression of the BMP antagonist Noggin in hair follicles or deletion of the BMP receptor in myofibroblasts prevented adipocyte formation. Adipocytes formed from human keloid fibroblasts either when treated with BMP or when placed with human hair follicles in vitro. Thus, we identify the myofibroblast as a plastic cell type that may be manipulated to treat scars in humans.
Journal Article
Structural basis for ALK2/BMPR2 receptor complex signaling through kinase domain oligomerization
2021
Upon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.
Bone morphogenetic protein (BMP) receptors are single pass transmembrane serine/threonine kinases that form tetrameric complexes comprised of two type I and two type II BMP receptors. Here the authors characterize a structure of an active type I/type II kinase tetramer providing insight into molecular mechanism driving ligand-induced signaling.
Journal Article
BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells
2011
Satellite cells are the resident stem cells of adult skeletal muscle, supplying myonuclei for homoeostasis, hypertrophy and repair. In this study, we have examined the role of bone morphogenetic protein (BMP) signalling in regulating satellite cell function. Activated satellite cells expressed BMP receptor type 1A (BMPR-1A/Alk-3) and contained phosphorylated Smad proteins, indicating that BMP signalling is operating during proliferation. Indeed, exogenous BMP4 stimulated satellite cell division and inhibited myogenic differentiation. Conversely, interfering with the interactions between BMPs and their receptors by the addition of either the BMP antagonist Noggin or soluble BMPR-1A fragments, induced precocious differentiation. Similarly, blockade of BMP signalling by siRNA-mediated knockdown of BMPR-1A, disruption of the intracellular pathway by either Smad5 or Smad4 knockdown or inhibition of Smad1/5/8 phosphorylation with Dorsomorphin, also caused premature myogenic differentiation. BMP signalling acted to inhibit the upregulation of genes associated with differentiation, in part, through regulating Id1. As satellite cells differentiated, Noggin levels increased to antagonise BMP signalling, since Noggin knockdown enhanced proliferation and impeded myoblast fusion into large multinucleated myotubes. Finally, interference of normal BMP signalling after muscle damage
in vivo
perturbed the regenerative process, and resulted in smaller regenerated myofibres. In conclusion, BMP signalling operates during routine satellite cell function to help coordinate the balance between proliferation and differentiation, before Noggin is activated to antagonise BMPs and facilitate terminal differentiation.
Journal Article
Comparative analysis of zebrafish bone morphogenetic proteins 2, 4 and 16: molecular and evolutionary perspectives
by
Cancela, M. Leonor
,
Marques, Cátia L
,
Viegas, Michael N
in
Amino Acid Sequence
,
Animals
,
Biochemistry
2016
BMP2, BMP4 and BMP16 form a subfamily of bone morphogenetic proteins acting as pleiotropic growth factors during development and as bone inducers during osteogenesis. BMP16 is the most recent member of this subfamily and basic data regarding protein structure and function, and spatio-temporal gene expression is still scarce. In this work, insights on BMP16 were provided through the comparative analysis of structural and functional data for zebrafish BMP2a, BMP2b, BMP4 and BMP16 genes and proteins, determined from three-dimensional models, patterns of gene expression during development and in adult tissues, regulation by retinoic acid and capacity to activate BMP-signaling pathway. Structures of Bmp2a, Bmp2b, Bmp4 and Bmp16 were found to be remarkably similar; with residues involved in receptor binding being highly conserved. All proteins could activate the BMP-signaling pathway, suggesting that they share a common function. On the contrary, stage- and tissue-specific expression of bmp2, bmp4 and bmp16 suggested the genes might be differentially regulated (e.g. different transcription factors, enhancers and/or regulatory modules) but also that they are involved in distinct physiological processes, although with the same function. Retinoic acid, a morphogen known to interact with BMP-signaling during bone formation, was shown to down-regulate the expression of bmp2, bmp4 and bmp16, although to different extents. Taxonomic and phylogenetic analyses indicated that bmp16 diverged before bmp2 and bmp4, is not restricted to teleost fish lineage as previously reported, and that it probably arose from a whole genomic duplication event that occurred early in vertebrate evolution and disappeared in various tetrapod lineages through independent events.
Journal Article