Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,112 result(s) for "bovine respiratory disease"
Sort by:
An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods
Abstract Bovine respiratory disease (BRD) causes significant economic losses to the feedlot industry due to decreased production and increased costs associated with treatment. This study aimed to assess the impacts of BRD on performance, carcass traits, and economic outcomes defined using four BRD diagnosis methods: number of BRD treatments an animal received, pleural lesions at slaughter, lung lesions at slaughter, and clinical BRD status defined using both treatment records and lung and pleural lesions. Crossbred steers (n = 898), with an initial body weight of 432 kg (± SD 51), were followed from feedlot entry to slaughter. Veterinary treatment records were collected and lungs scored at slaughter for lesions indicative of BRD. There was an 18% morbidity rate and a 2.1% BRD mortality rate, with an average net loss of AUD$1,647.53 per BRD mortality. Animals treated ≥3 times for BRD had 39.6 kg lighter carcasses at slaughter and returned an average of AUD$384.97 less compared to animals never treated for BRD (P < 0.001). Animals with severe lung lesions at slaughter grew 0.3 kg/d less, had 14.3 kg lighter carcasses at slaughter, and returned AUD$91.50 less than animals with no lung lesions (P < 0.001). Animals with subclinical and clinical BRD had 16.0 kg and 24.1 kg lighter carcasses, respectively, and returned AUD$67.10 and AUD$213.90 less at slaughter, respectively, compared to healthy animals that were never treated with no lesions (P < 0.001). The severity of BRD based on the number of treatments an animal received and the severity of lung and pleural lesions reduced animal performance, carcass weight and quality, and economic returns. Subclinical BRD reduced animal performance and economic returns compared to healthy animals; however, subclinical animals still had greater performance than animals with clinical BRD. This information can be used to plan for strategic investments aimed at reducing the impacts of BRD in feedlot cattle such as improved detection methods for subclinical animals with lesions at slaughter and BRD treatment protocols.
Limitations of bacterial culture, viral PCR, and tulathromycin susceptibility from upper respiratory tract samples in predicting clinical outcome of tulathromycin control or treatment of bovine respiratory disease in high-risk feeder heifers
A cross-sectional prospective cohort study including 1026 heifers administered tulathromycin due to high risk of clinical signs of bovine respiratory disease (BRD), measured poor association between BRD clinical outcomes and results of bacterial culture and tulathromycin susceptibility from BRD isolates of deep nasopharyngeal swabs (DNS) and adequate association with viral polymerase chain reaction (PCR) results from nasal swabs. Isolation rates from DNS collected on day-0 and at 1 st BRD-treatment respectively were: Mannheimia haemolytica (10.9% & 34.1%); Pasteurella multocida (10.4% & 7.4%); Mycoplasma bovis (1.0% & 36.6%); and Histophilus somni (0.7% & 6.3%). Prevalence of BRD viral nucleic acid on nasal swabs collected exclusively at 1 st BRD-treatment were: bovine parainfluenza virus type-3 (bPIV-3) 34.1%; bovine viral diarrhea virus (BVDV) 26.3%; bovine herpes virus type-1 (BHV-1) 10.8%; and bovine respiratory syncytial virus (BRSV) 54.1%. Increased relative risk, at 95% confidence intervals, of 1 st BRD-treatment failure was associated with positive viral PCR results: BVDV 1.39 (1.17–1.66), bPIV-3 1.26 (1.06–1.51), BHV-1 1.52 (1.25–1.83), and BRSV 1.35 (1.11–1.63) from nasal swabs collected at 1 st BRD-treatment and culture of M . haemolytica 1.23 (1.00–1.51) from DNS collected at day-0. However, in this population of high-risk feeder heifers, the predictive values of susceptible and resistant isolates had inadequate association with BRD clinical outcome. These results indicate, that using tulathromycin susceptibility testing of isolates of M . haemolytica or P . multocida from DNS collected on arrival or at 1 st BRD-treatment to evaluate tulathromycin clinical efficacy, is unreliable.
Structured Literature Review of Responses of Cattle to Viral and Bacterial Pathogens Causing Bovine Respiratory Disease Complex
Bovine respiratory disease (BRD) is an economically important disease of cattle and continues to be an intensely studied topic. However, literature summarizing the time between pathogen exposure and clinical signs, shedding, and seroconversion is minimal. A structured literature review of the published literature was performed to determine cattle responses (time from pathogen exposure to clinical signs, shedding, and seroconversion) in challenge models using common BRD viral and bacterial pathogens. After review a descriptive analysis of published studies using common BRD pathogen challenge studies was performed. Inclusion criteria were single pathogen challenge studies with no treatment or vaccination evaluating outcomes of interest: clinical signs, shedding, and seroconversion. Pathogens of interest included: bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV‐1), parainfluenza‐3 virus, bovine respiratory syncytial virus, Mannheimia haemolytica, Mycoplasma bovis, Pastuerella multocida, and Histophilus somni. Thirty‐five studies and 64 trials were included for analysis. The median days to the resolution of clinical signs after BVDV challenge was 15 and shedding was not detected on day 12 postchallenge. Resolution of BHV‐1 shedding resolved on day 12 and clinical signs on day 12 postchallenge. Bovine respiratory syncytial virus ceased shedding on day 9 and median time to resolution of clinical signs was on day 12 postchallenge. M. haemolytica resolved clinical signs 8 days postchallenge. This literature review and descriptive analysis can serve as a resource to assist in designing challenge model studies and potentially aid in estimation of duration of clinical disease and shedding after natural pathogen exposure.
Comprehensive at-arrival transcriptomic analysis of post-weaned beef cattle uncovers type I interferon and antiviral mechanisms associated with bovine respiratory disease mortality
Despite decades of extensive research, bovine respiratory disease (BRD) remains the most devastating disease in beef cattle production. Establishing a clinical diagnosis often relies upon visual detection of non-specific signs, leading to low diagnostic accuracy. Thus, post-weaned beef cattle are often metaphylactically administered antimicrobials at facility arrival, which poses concerns regarding antimicrobial stewardship and resistance. Additionally, there is a lack of high-quality research that addresses the gene-by-environment interactions that underlie why some cattle that develop BRD die while others survive. Therefore, it is necessary to decipher the underlying host genomic factors associated with BRD mortality versus survival to help determine BRD risk and severity. Using transcriptomic analysis of at-arrival whole blood samples from cattle that died of BRD, as compared to those that developed signs of BRD but lived (n = 3 DEAD, n = 3 ALIVE), we identified differentially expressed genes (DEGs) and associated pathways in cattle that died of BRD. Additionally, we evaluated unmapped reads, which are often overlooked within transcriptomic experiments. 69 DEGs (FDR<0.10) were identified between ALIVE and DEAD cohorts. Several DEGs possess immunological and proinflammatory function and associations with TLR4 and IL6. Biological processes, pathways, and disease phenotype associations related to type-I interferon production and antiviral defense were enriched in DEAD cattle at arrival. Unmapped reads aligned primarily to various ungulate assemblies, but failed to align to viral assemblies. This study further revealed increased proinflammatory immunological mechanisms in cattle that develop BRD. DEGs upregulated in DEAD cattle were predominantly involved in innate immune pathways typically associated with antiviral defense, although no viral genes were identified within unmapped reads. Our findings provide genomic targets for further analysis in cattle at highest risk of BRD, suggesting that mechanisms related to type I interferons and antiviral defense may be indicative of viral respiratory disease at arrival and contribute to eventual BRD mortality.
Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex
Bovine respiratory disease complex (BRDC) is an important cause of mortality and morbidity in cattle; costing the dairy and beef industries millions of dollars annually, despite the use of vaccines and antibiotics. BRDC is caused by one or more of several viruses (bovine respiratory syncytial virus, bovine herpes type 1 also known as infectious bovine rhinotracheitis, and bovine viral diarrhea virus), which predispose animals to infection with one or more bacteria. These include: Pasteurella multocida, Mannheimia haemolytica, Mycoplasma bovis, and Histophilus somni. Some cattle appear to be more resistant to BRDC than others. We hypothesize that appropriate immune responses to these pathogens are subject to genetic control. To determine which genes are involved in the immune response to each of these pathogens it was first necessary to experimentally induce infection separately with each pathogen to document clinical and pathological responses in animals from which tissues were harvested for subsequent RNA sequencing. Herein these infections and animal responses are described.
Predicting bovine respiratory disease outcome in feedlot cattle using latent class analysis
Abstract Bovine respiratory disease (BRD) is the most significant disease affecting feedlot cattle. Indicators of BRD often used in feedlots such as visual signs, rectal temperature, computer-assisted lung auscultation (CALA) score, the number of BRD treatments, presence of viral pathogens, viral seroconversion, and lung damage at slaughter vary in their ability to predict an animal’s BRD outcome, and no studies have been published determining how a combination of these BRD indicators may define the number of BRD disease outcome groups. The objectives of the current study were (1) to identify BRD outcome groups using BRD indicators collected during the feeding phase and at slaughter through latent class analysis (LCA) and (2) to determine the importance of these BRD indicators to predict disease outcome. Animals with BRD (n = 127) were identified by visual signs and removed from production pens for further examination. Control animals displaying no visual signs of BRD (n = 143) were also removed and examined. Blood, nasal swab samples, and clinical measurements were collected. Lung and pleural lesions indicative of BRD were scored at slaughter. LCA was applied to identify possible outcome groups. Three latent classes were identified in the best model fit, categorized as non-BRD, mild BRD, and severe BRD. Animals in the mild BRD group had a higher probability of having visual signs of BRD compared with non-BRD and severe BRD animals. Animals in the severe BRD group were more likely to require more than 1 treatment for BRD and have ≥40 °C rectal temperature, ≥10% total lung consolidation, and severe pleural lesions at slaughter. Animals in the severe BRD group were also more likely to be naïve at feedlot entry and the first BRD pull for Bovine Viral Diarrhoea Virus, Bovine Parainfluenza 3 Virus, and Bovine Adenovirus and have a positive nasal swab result for Bovine Herpesvirus Type 1 and Bovine Coronavirus. Animals with severe BRD had 0.9 and 0.6 kg/d lower overall ADG (average daily gain) compared with non-BRD animals and mild BRD animals (P < 0.001). These results demonstrate that there are important indicators of BRD severity. Using this information to predict an animal’s BRD outcome would greatly enhance treatment efficacy and aid in better management of animals at risk of suffering from severe BRD.
Combining dynamic generalized linear models and mechanistic modelling to optimize treatment strategies against bovine respiratory disease
Bovine respiratory disease (BRD) is a major health challenge for young bulls. To minimize economic losses, collective treatments have been widely adopted. Nevertheless, performing collective treatments involves a trade-off between BRD cumulative incidence and severity, and antimicrobial usage (AMU). Therefore, we propose a proof-of-concept of a decision support tool aimed at helping farmers and veterinarians make informed decisions about the appropriate timing for performing collective treatment for BRD. The proposed framework integrates a mechanistic stochastic simulation engine for modelling the spread of a BRD pathogen ( Mannheimia haemolytica ) and a hierarchical multivariate binomial dynamic generalized linear model (DGLM), which provides early warnings based on infection risk estimates. Using synthetic data, we studied 48 scenarios, involving two batch sizes (small and large), four farm risk levels for developing BRD (low, medium, balanced, and high), two batch allocation systems (sorted by risk level or randomly allocated), and three treatment interventions (individual, conventional collective, and DGLM-based collective). In high- and medium-risk scenarios, collective treatments triggered by the DGLM were associated with a reduction in BRD cumulative incidence and disease severity, especially in large populations. Compared with conventional treatments, DGLM-based collective treatments typically result in either lower or equivalent AMU, with the largest reductions being observed in medium-, balanced-, and high-risk scenarios. Additionally, the DGLM estimates of infection risk aligned well with the empirical risk estimates during the first time steps of the simulation. These findings highlight the potential of the proposed decision support tool in providing valuable guidance for improving animal welfare and AMU. Further validation through real-world data collected from on-farm situations is necessary.
The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media
The upper respiratory tract (URT) hosts a complex microbial community of commensal microorganisms and potential pathogens. Analyzing the composition and nature of the healthy URT microbiota and how it changes over time will contribute to a better understanding of the pathogenesis of pneumonia and otitis. A longitudinal study was conducted including 174 Holstein calves that were divided in four groups: healthy calves, calves diagnosed with pneumonia, otitis or both diseases. Deep pharyngeal swabs were collected on days 3, 14, 28 and 35 of life and next-generation sequencing of the 16S rRNA gene as well as quantitative PCR was performed. The URT of Holstein dairy calves aged 3 to 35 days revealed to host a highly diverse bacterial community. The relative abundances of the bacterial genera Mannheimia, Moraxella and Mycoplasma were significantly higher in diseased versus healthy animals and the total bacterial load of newborn calves at day 3 was higher for animals that developed pneumonia than for healthy animals. Our results corroborate the existing knowledge that species of Mannheimia and Mycoplasma are important pathogens in pneumonia and otitis. Furthermore, they suggest that species of Moraxella can potentially cause the same disorders (pneumonia and otitis) and that high neonatal bacterial load is a key contributor to the development of pneumonia.
BRD in 2014: where have we been, where are we now, and where do we want to go?
Bovine respiratory disease (BRD) is a worldwide health concern and is the number one disease of stocker, backgrounder, and feedlot cattle in North America. In feedlots in the USA, BRD accounts for 70–80% of all feedlot morbidity and 40–50% of all mortality. In 2011, the US Department of Agriculture's National Animal Health Monitoring System conducted a feedlot study that showed 16.2% of all feedlot cattle were treated for BRD. It is universally accepted that this number is distressingly high and that our industry has the tools available to reduce the incidence of BRD.
Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections (“bovine pasteurellosis”), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.