Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
21,484 result(s) for "breeding methods"
Sort by:
Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery
Wayne Powell and colleagues compare the different tools and approaches used by the plant breeding community versus the animal breeding community for crop and livestock improvement. They argue that the two disciplines can be united via adoption of genomic selection along with the exchange of resources and techniques between the two areas. The rate of annual yield increases for major staple crops must more than double relative to current levels in order to feed a predicted global population of 9 billion by 2050. Controlled hybridization and selective breeding have been used for centuries to adapt plant and animal species for human use. However, achieving higher, sustainable rates of improvement in yields in various species will require renewed genetic interventions and dramatic improvement of agricultural practices. Genomic prediction of breeding values has the potential to improve selection, reduce costs and provide a platform that unifies breeding approaches, biological discovery, and tools and methods. Here we compare and contrast some animal and plant breeding approaches to make a case for bringing the two together through the application of genomic selection. We propose a strategy for the use of genomic selection as a unifying approach to deliver innovative 'step changes' in the rate of genetic gain at scale.
Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding
Genebanks have the long-term mission of preserving plant genetic resources as an agricultural legacy for future crop improvement. Operating procedures for seed storage and plant propagation have been in place for decades, but there is a lack of effective means for the discovery and transfer of beneficial alleles from landraces and wild relatives into modern varieties. Here, we review the prospects of using molecular passport data derived from genomic sequence information as a universal monitoring tool at the single-plant level within and between genebanks. Together with recent advances in breeding methodologies, the transformation of genebanks into bio-digital resource centers will facilitate the selection of useful genetic variation and its use in breeding programs, thus providing easy access to past crop diversity. We propose linking catalogs of natural genetic variation and enquiries into biological mechanisms of plant performance as a long-term joint research goal of genebanks, plant geneticists and breeders. A Perspective on the future of agricultural genebank collections discusses how the use of molecular passport data can help facilitate genomic selection and accelerate crop breeding.
Application of genetics and biotechnology for improving medicinal plants
For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.
Genome-wide prediction models that incorporate de novo GWAS are a powerful new tool for tropical rice improvement
To address the multiple challenges to food security posed by global climate change, population growth and rising incomes, plant breeders are developing new crop varieties that can enhance both agricultural productivity and environmental sustainability. Current breeding practices, however, are unable to keep pace with demand. Genomic selection (GS) is a new technique that helps accelerate the rate of genetic gain in breeding by using whole-genome data to predict the breeding value of offspring. Here, we describe a new GS model that combines RR-BLUP with markers fit as fixed effects selected from the results of a genome-wide-association study (GWAS) on the RR-BLUP training data. We term this model GS + de novo GWAS. In a breeding population of tropical rice, GS + de novo GWAS outperformed six other models for a variety of traits and in multiple environments. On the basis of these results, we propose an extended, two-part breeding design that can be used to efficiently integrate novel variation into elite breeding populations, thus expanding genetic diversity and enhancing the potential for sustainable productivity gains.
Genotype by environment and genotype by yieldtrait interactions in sugar beet: analyzing yield stability and determining key traits association
The genotype by environment interaction significantly influences plant yield, making it imperative to understand its nature for the creation of breeding programs to enhance crop production. However, this is not the only obstacle in the yield improvement process. Breeders also face the significant challenge of unfavorable and negative correlations among key traits. In this study, the stability of root yield and white sugar yield, and the association between the key traits of root yield, sugar content, nitrogen, sodium, and potassium were examined in 20 sugar beet genotypes. The study was conducted using a randomized complete block design with four replications over two consecutive years across five locations. The combined analysis of variance results revealed significant main effects of year, location, and genotype on both root yield and white sugar yield. Notably, two-way and three-way interactions between these main effects on root yield and white sugar yield resulted in a significant difference. The additive main effect and multiplicative interaction analysis revealed that the first five interaction principal components significantly impacted both the root yield and white sugar yield. The linear mixed model results for root yield and white sugar yield indicated that the genotype effect and the genotype by environment interaction were significant. The weighted average absolute scores of the best linear unbiased predictions biplot demonstrated that genotypes 20, 4, 7, 2, 16, 3, 6, 1, 14, and 15 were superior in terms of root yield. For white sugar yield, genotypes 4, 16, 3, 7, 5, 1, 10, 20, 2, and 6 stood out. These genotypes were not only stable but also had a yield value higher than the total average. All key traits, which include sugar content, sodium, potassium, and alpha amino nitrogen, demonstrated a negative correlation with root yield. Based on the genotype by yield*trait analysis results, genotypes 20, 19, and 16 demonstrated optimal performance when considering the combination of root yield with sugar content, sodium, alpha amino nitrogen, and potassium. The multi-trait stability study, genotype 13 ranked first, and genotypes 10, 8, and 9 were identified as the most ideal stable genotypes across all traits. According to the multi-trait stability index, genotype 13 emerged as the top-ranking genotype. Additionally, genotypes 10, 8, and 9 were recognized as the most stable genotypes.
Genome editing and beyond: what does it mean for the future of plant breeding?
Main conclusionGenome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption.The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as \"conventional\" or \"GMO\"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Potentials and Challenges of Genomics for Breeding Cannabis Cultivars
( L.) is an influential yet controversial agricultural plant with a very long and prominent history of recreational, medicinal, and industrial usages. Given the importance of this species, we deepened some of the main challenges-along with potential solutions-behind the breeding of new cannabis cultivars. One of the main issues that should be fixed before starting new breeding programs is the uncertain taxonomic classification of the two main taxa (e.g., and a) of the genus. We tried therefore to examine this topic from a molecular perspective through the use of DNA barcoding. Our findings seem to support a unique species system ( ) based on two subspecies: subsp. and subsp. . The second key issue in a breeding program is related to the dioecy behavior of this species and to the comprehension of those molecular mechanisms underlying flower development, the main cannabis product. Given the role of MADS box genes in flower identity, we analyzed and reorganized all the genomic and transcriptomic data available for homeotic genes, trying to decipher the applicability of the ABCDE model in . Finally, reviewing the limits of the conventional breeding methods traditionally applied for developing new varieties, we proposed a new breeding scheme for the constitution of F hybrids, without ignoring the indisputable contribution offered by genomics. In this sense, in parallel, we resumed the main advances in the genomic field of this species and, ascertained the lack of a robust set of SNP markers, provided a discriminant and polymorphic panel of SSR markers as a valuable tool for future marker assisted breeding programs.
Promises and challenges of crop translational genomics
Crop translational genomics applies breeding techniques based on genomic datasets to improve crops. Technological breakthroughs in the past ten years have made it possible to sequence the genomes of increasing numbers of crop varieties and have assisted in the genetic dissection of crop performance. However, translating research findings to breeding applications remains challenging. Here we review recent progress and future prospects for crop translational genomics in bringing results from the laboratory to the field. Genetic mapping, genomic selection and sequence-assisted characterization and deployment of plant genetic resources utilize rapid genotyping of large populations. These approaches have all had an impact on breeding for qualitative traits, where single genes with large phenotypic effects exert their influence. Characterization of the complex genetic architectures that underlie quantitative traits such as yield and flowering time, especially in newly domesticated crops, will require further basic research, including research into regulation and interactions of genes and the integration of genomic approaches and high-throughput phenotyping, before targeted interventions can be designed. Future priorities for translation include supporting genomics-assisted breeding in low-income countries and adaptation of crops to changing environments. This Perspective reviews crop translational genomics and how it is helping to bring laboratory genetics to the crop field.
Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination
Meiotic recombination is a critical process for plant breeding, as it creates novel allele combinations that can be exploited for crop improvement. In wheat, a complex allohexaploid that has a diploid-like behaviour, meiotic recombination between homoeologous or alien chromosomes is suppressed through the action of several loci. Here, we report positional cloning of Pairing homoeologous 2 (Ph2) and functional validation of the wheat DNA mismatch repair protein MSH7-3D as a key inhibitor of homoeologous recombination, thus solving a half-century-old question. Similar to ph2 mutant phenotype, we show that mutating MSH7-3D induces a substantial increase in homoeologous recombination (up to 5.5 fold) in wheat-wild relative hybrids, which is also associated with a reduction in homologous recombination. These data reveal a role for MSH7-3D in meiotic stabilisation of allopolyploidy and provides an opportunity to improve wheat’s genetic diversity through alien gene introgression, a major bottleneck facing crop improvement. In the allohexaploid genome of wheat, meiotic recombination between homoeologues is suppressed through the action of several loci. Here, the authors report the cloning of the long sought-after gene Ph2 and show its function in reduction of homoeologous recombination.
Breeding of new kiwifruit (Actinidia chinensis) cultivars with yellow (golden) fleshed and superior characteristics
The most widely cultivated species globally is Actinidia deliciosa cv. ‘Hayward’. However, in recent years, consumers have shown greater demand for new varieties with novel flesh colour, flavour and appearance in international markets. To meet these expectations, one breeding study was started in 2016 at the University of Guilan in Iran to develop new kiwifruit cultivars with superior characteristics. In this breeding program, 201 female and 534 male hybrid genotypes were obtained from combinations of six different parents using the controlled cross-breeding technique. The evaluations were carried out over three consecutive stages. In the first stage, 201 female hybrid genotypes and control (‘Golden’) were evaluated based on 25 phenological and pomological traits. In the second stage, hybrids passed the desired threshold values in 7 key attributes were selected. Sensory testing in the next stage evaluated these selected hybrid genotypes more. As a result of the first stage, 30 hybrid genotypes with fruit weight (90 ≥ g) were selected. Then, in the second stage, 21 hybrids that showed acceptable dry matter, hue angle, flesh firmness, soluble solid content, acidity, and ascorbic acid were selected. Finally, 13 hybrid genotypes received high scores in sensory testing, and just two hybrid genotypes represented a 100% of novelty with positive texture. These genotypes were selected as potential cultivar candidates. In future studies, fruit yield, disease/pest resistance, and post-harvest performance trials of the 13 selected candidates will be evaluated at different sites. Thus, the ones that give the best results will be introduced to kiwifruit growers.