Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
42
result(s) for
"breeding propensity"
Sort by:
The impact of sea ice conditions on breeding decisions is modulated by body condition in an arctic partial capital breeder
2018
Determining how environmental conditions interact with individual intrinsic properties is important for unravelling the underlying mechanisms that drive variation in reproductive decisions among migratory species. We investigated the influence of sea ice conditions and body condition at arrival on the breeding propensity, i.e. the decision to reproduce or not within a single breeding season, and timing of laying in migrating common eiders (Somateria mollissima) breeding in the Arctic. Using Radarsat satellite images acquired from 2002 to 2013, we estimated the proportion of open water in the intertidal zone in early summer to track the availability of potential foraging areas for pre-breeding females. Timing of ice-breakup varied by up to 20 days across years and showed strong relationship with both breeding propensity and the timing of laying of eiders: fewer pre-breeding individuals were resighted nesting in the colony and laying was also delayed in years with late ice-breakup. Interestingly, the effect of sea ice dynamics on reproduction was modulated by the state of individuals at arrival on the breeding grounds: females arriving in low condition were more affected by a late ice-breakup. Open water accessibility in early summer, a likely proxy of food availability, is thus crucial for reproductive decisions in a (partial) capital breeder. Our predictive capacity in determining how Arctic-breeding seabirds respond to changes in environmental conditions will require incorporating such cross-seasonal cumulative effects.
Journal Article
To breed or not to breed
2018
Intermittent breeding may be adaptive for long-lived species subjected to large accessory reproductive costs, but it may also reflect reduced adaptation to the environment, reducing population growth. Nevertheless, environmental influences on breeding propensity, particularly that of predation risk, remain poorly understood and difficult to study, because non-breeders are typically not identified. Female eiders Somateria mollissima from the Baltic Sea provide an excellent testbed, because nesting females have been exposed to intensifying predation and growing male bias that may increase female harassment. We based our study on long-term data (14 years) on females captured and marked at the nest, and females individually identified at sea irrespective of capture status. We hypothesized that breeding propensity decreases with increasing predation risk and male bias, and increases with breeder age. Consistent with our hypotheses, females nesting on islands with higher nest predation risk were more likely to skip breeding, and breeding probability increased with age. In contrast, the steep temporal decline in breeding propensity could not be reliably attributed to annual adult sex ratio or to the abundance of white-tailed sea eagles (Haliaeetus albicilla), the main predator on females, at the nearby Hanko Bird Observatory. Breeding probability showed significant consistent individual variation. Our results demonstrate that spatiotemporal variation in predation risk affects the decision to breed and high incidence of non-breeding was associated with low fledging success. The increased frequency of intermittent breeding in this declining population should be explicitly considered in demographic models, and emphasis placed on understanding the preconditions for successful reproduction.
Journal Article
New information on the breeding and moulting ecology of the Eastern population of Lesser White-fronted Goose Anser erythropus from GPS/GSM tracking data
by
Solovyeva, Diana
,
Vartanyan, Sergey
,
Barykina, Daria
in
Animal breeding
,
Anser erythropus
,
Aquatic birds
2025
The Eastern population of the Lesser White-fronted Goose (EPLWFG) Anser erythropus is shared between Russia and China. The summer range of the EPLWFG has been recognised as a continuous area extending from the Olenyok River in the west to the Anadyr River in the east and northwards from 64°N. The aim of this study was to provide information on breeding behaviour; nest-sites, nesting habitats, and time of nesting; nesting success; timing of summer movements including moult migration; moult timing, duration, and moulting habitats; site fidelity; and the effect of human presence. To accomplish this, we combined the results from field surveys with GPS/GSM tracking. A total of 30 summer tracks from 19 individual EPLWFG were analysed. We estimated breeding propensity in 93.8% of adult LWFG, and this factor did not seem to depend on breeding success in the previous season. Reproductive success was 13.3% in all nesting attempts. Non-breeders arrived three-week later and departed a week earlier. The EPLWFG are highly mobile during the summer. The core moulting site for the entire EPLWFG was discovered by this study and is located along the lower reaches of the San-Yuryakh and Kyuanekhtyakh rivers flowing towards the Omulyakhskaya Bay of the East Siberian Sea. The EPLWFG flightless period was 24.8 ± 2.8 days. A part of failured EPLWFG (43.7 %) migrated back to its early summer breeding/staging site after having completed moult. The strong site fidelity (100%) of adult birds to both nesting and moulting sites promotes the formation of local breeding populations, which could be considered conservation units if genetic studies support this differentiation. The EPLWFG selects the remotest and least human-accessible area for their remigial moult, and the main site was discovered with the help of tracking.
Journal Article
To breed or not: a novel approach to estimate breeding propensity and potential trade-offs in an Arctic-nesting species
by
Souchay, Guillaume
,
Gauthier, Gilles
,
Pradel, Roger
in
Animal ecology
,
Animal reproduction
,
Anser caerulescens
2014
Breeding propensity, i.e., the probability that a mature female attempts to breed in a given year, is a critical demographic parameter in long-lived species. Life-history theory predicts that this trait should be affected by reproductive trade-offs so that the probability of future reproduction should depend on the current reproductive investment. However, breeding propensity is one of the most difficult parameters to estimate because nonbreeders are often absent from the breeding area, thereby requiring the inclusion of unobservable states in the analysis. We developed a new methodological approach by integrating a robust design sampling scheme within the multi-event capture-recapture framework. Our new model accounted for uncertainty in state assignation while allowing for departure of individuals between secondary sampling occasions. We applied this model to a long-term data set of female Greater Snow Geese (
Chen caerulescens atlantica
) to estimate breeding propensity and to investigate potential reproductive costs. We combined resightings during the nesting stage and recapture at the end of the breeding season to estimate breeding propensity and nesting success, and added recoveries to improve survival probability estimates. We found that both breeding propensity and nesting success depended upon breeding status in the previous year, though not survival. Successful breeders had a lower breeding propensity than failed breeders in the following year, but a higher nesting success. Individuals absent from the breeding colony had a low breeding propensity, but a high nesting success the following year. Our results suggest a cost of reproduction on breeding propensity in the next year, but once females decide to breed, nesting success is likely driven by individual quality. An added benefit of our model is that, unlike previous models with unobservable states, all parameters were identifiable when survival and breeding probabilities were fully state dependent. Our new multi-event framework is a flexible tool that can be applied to a large range of species to estimate breeding propensity and to investigate reproductive trade-offs.
Journal Article
Contrasting effects of the onset of spring on reproductive success of Arctic-nesting geese
by
Nolet, Bart A.
,
Schreven, Kees H. T.
,
Boom, Michiel P.
in
Animal reproduction
,
Anseriformes
,
Aquatic birds
2019
Breeding output of geese, measured as the proportion of juveniles in autumn or winter flocks, is lower in years with a late onset of spring in some species, but higher in at least one other species. Here we argue that this is because the timing of spring affects different stages of the reproductive cycle differently in different species. Because the effects on 2 different stages are opposite, the combined effects can result in either a positive or a negative overall effect. These stages are the pre-laying, laying, and nesting phase on the one hand; and the hatchling, fledgling, and juvenile phase on the other hand. The first phase is predominantly positively affected by an early snowmelt, with higher breeding propensity, clutch size, and nest success. The second phase in contrast is negatively affected by early snowmelt because of a mismatch with a nutrient food peak, leading to slow gosling growth and reduced survival. We argue that recognition of this chain of events is crucial when one wants to predict goose productivity and eventually goose population dynamics. In a rapidly warming Arctic, the negative effects of a mismatch might become increasingly important.
Journal Article
Intercolony variation in reproductive skipping in the African penguin
by
Leith, Freddie W
,
Grigg, Jennifer L
,
Barham, Peter J
in
Animal breeding
,
Behavioural Ecology
,
Benguela ecosystem
2022
In long-lived species, reproductive skipping is a common strategy whereby sexually mature animals skip a breeding season, potentially reducing population growth. This may be an adaptive decision to protect survival, or a non-adaptive decision driven by individual-specific constraints. Understanding the presence and drivers of reproductive skipping behavior can be important for effective population management, yet in many species such as the endangered African penguin (Spheniscus demersus), these factors remain unknown.
Journal Article
Multievent: An Extension of Multistate Capture-Recapture Models to Uncertain States
2005
Capture-recapture models were originally developed to account for encounter probabilities that are less than 1 in free-ranging animal populations. Nowadays, these models can deal with the movement of animals between different locations and are also used to study transitions between different states. However, their use to estimate transitions between states does not account for uncertainty in state assignment. I present the extension of multievent models, which does incorporate this uncertainty. Multievent models belong to the family of hidden Markov models. I also show in this article that the memory model, in which the next state or location is influenced by the previous state occupied, can be fully treated within the framework of multievent models.
Journal Article
Conservation implications of a mismatch between data availability and demographic impact
by
Doncaster, C. Patrick
,
Hilton, Geoff M.
,
Wood, Kevin A.
in
Applied Ecology
,
Availability
,
Biodiversity
2023
Cost‐effective use of limited conservation resources requires understanding which data most contribute to alleviating biodiversity declines. Interventions might reasonably prioritise life‐cycle transitions with the greatest influence on population dynamics, yet some contributing vital rates are particularly challenging to document. This risks managers making decisions without sufficient empirical coverage of the spatiotemporal variation experienced by the species. Here, we aimed to explore whether the number of studies contributing estimates for a given life‐stage transition aligns with that transition's demographic impact on population growth rate, λ. We parameterised a matrix population model using meta‐analysis of vital rates for the common eider (Somateria mollissima), an increasingly threatened yet comparatively data‐rich species of seaduck, for which some life stages are particularly problematic to study. Female common eiders exhibit intermittent breeding, with some established breeders skipping one or more years between breeding attempts. Our meta‐analysis yielded a breeding propensity of 0.72, which we incorporated into our model with a discrete and reversible ‘nonbreeder’ stage (to which surviving adults transition with a probability of 0.28). The transitions between breeding and nonbreeding states had twice the influence on λ than fertility (summed matrix‐element elasticities of 24% and 11%, respectively), whereas almost 15 times as many studies document components of fertility than breeding propensity (n = 103 and n = 7, respectively). The implications of such mismatches are complex because the motivations for feasible on‐the‐ground conservation actions may be different from what is needed to reduce uncertainty in population projections. Our workflow could form an early part of the toolkit informing future investment of finite resources, to avoid repeated disconnects between data needs and availability thwarting evidence‐led conservation. Demographic models supporting wildlife management depend on available information, making it imperative to prioritise collection of the right data. In the data‐rich exemplar of the common eider, breeding propensity is understudied relative to its importance. We present a workflow which could form part of a toolkit towards evidence‐led conservation.
Journal Article
Food availability and predation risk, rather than intrinsic attributes, are the main factors shaping the reproductive decisions of a long‐lived predator
by
Petty, Steve J.
,
Whitfield, D. Philip
,
Lambin, Xavier
in
Accipiter gentilis
,
Age Factors
,
Animal reproduction
2016
Deciphering the causes of variation in reproductive success is a fundamental issue in ecology, as the number of offspring produced is an important driver of individual fitness and population dynamics. Little is known, however, about how different factors interact to drive variation in reproduction, such as whether an individual's response to extrinsic conditions (e.g. food availability or predation) varies according to its intrinsic attributes (e.g. age, previous allocation of resources towards reproduction). We used 29 years of reproductive data from marked female tawny owls and natural variation in food availability (field vole) and predator abundance (northern goshawk) to quantify the extent to which extrinsic and intrinsic factors interact to influence owl reproductive traits (breeding propensity, clutch size and nest abandonment). Extrinsic and intrinsic factors appeared to interact to affect breeding propensity (which accounted for 83% of the variation in owl reproductive success). Breeding propensity increased with vole density, although increasing goshawk abundance reduced the strength of this relationship. Owls became slightly more likely to breed as they aged, although this was only apparent for individuals who had fledged chicks the year before. Owls laid larger clutches when food was more abundant. When owls were breeding in territories less exposed to goshawk predation, 99·5% of all breeding attempts reached the fledging stage. In contrast, the probability of breeding attempts reaching the fledging stage in territories more exposed to goshawk predation depended on the amount of resources an owl had already allocated towards reproduction (averaging 87·7% for owls with clutches of 1–2 eggs compared to 97·5% for owls with clutches of 4–6 eggs). Overall, our results suggested that changes in extrinsic conditions (predominantly food availability, but also predator abundance) had the greatest influence on owl reproduction. In response to deteriorating extrinsic conditions (fewer voles and more goshawks), owls appeared to breed more frequently, but allocated fewer resources per breeding attempt. However, intrinsic attributes also appeared to have a relatively small influence on how an individual responded to variation in extrinsic conditions, which indicates that owl reproductive decisions were shaped by a complex series of extrinsic and intrinsic trade‐offs.
Journal Article
Direct and indirect effects of nesting density on survival and breeding propensity of an endangered shorebird
by
Hunt, Kelsi L.
,
Weithman, Chelsea E.
,
Karpanty, Sarah M.
in
adults
,
age structure
,
Aquatic birds
2019
Density‐dependent regulation is a fundamental part of ecological theory and a significant driver of animal demography often through complex feedback loops. We investigated the relationship between flood‐ and demographically induced fluctuations in density and the breeding propensity and survival of a pioneer species, the piping plover (plover, Charadrius melodus). We captured and marked adult and hatchling plovers on the Gavins Point Reach of the Missouri River in South Dakota and Nebraska, USA, from 2005 to 2014. In 2010 and 2011, historically high water levels and flooding inundated much of the plover's sandbar nesting habitat on the Missouri River. We developed a Bayesian formulation of a multievent model, or a multistate survival model with state uncertainty to estimate breeding propensity simultaneously with survival. Although plovers are conspicuous, their breeding status can be difficult to establish with certainty, which necessitated the use of uncertain states. With this model, we investigated the effect of sex, habitat availability, river flow, and density (birds/ha nesting habitat) on survival of hatch year and breeding and non‐breeding adult plovers. In addition, we estimated the transition rates for these age classes between breeding and non‐breeding states. Non‐breeding adults (ϕ¯AHY,n = 0.58 ± 0.06) had lower survival rates than breeding adults (ϕ¯AHY,b = 0.80 ± 0.04), and both breeding survival and breeding propensity decreased with increasing nesting density. Not only did survival and breeding propensity decrease directly at higher nest densities, but survival also was indirectly impacted by increasing the proportion of non‐breeding birds with relatively low survival. Thus, plovers were regulated through a complex set of feedback loops, acting as densities increased. Our findings underscore the intricacy of density‐dependent regulation and suggest that detailed demographic studies are needed to fully understand these effects.
Journal Article