Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
86 result(s) for "cadi"
Sort by:
Chronostratigraphy and tectono‐sedimentary history of the Eastern South Pyrenean foreland basin (Ripoll Syncline, North‐East Spain)
This paper contributes to an understanding of the tectono‐sedimentary evolution of the South Pyrenean foreland system by reviewing the chronostratigraphic framework of the basin infill in its eastern sector. Six sections are analysed and cross‐correlated to build a 6.5 km thick composite magnetostratigraphy that represents the complete record of the Cadí Nappe in the Ripoll Syncline. New and previous magnetostratigraphic sections are integrated with available biostratigraphy to provide a new age calibration of the sedimentary succession of the Cadí Nappe, encompassing from Palaeocene to Middle Lutetian age. The proposed correlation with the Geomagnetic Polarity Time Scale aims at best reconcile magnetostratigraphic data with the regional biochronology built on the marine Shallow Benthic Zonation (SBZ biozones), the continental mammalian biochronology (MP levels) and the newly collected charophyte data. A subsidence analysis was performed on the calibrated composite succession, resulting in two well‐defined intervals bounded by a hiatus. A Palaeocene to Early Eocene interval with low (11–21 cm/kyr) total subsidence rates, and an Early to Middle Eocene interval, characterised by high (70–75 cm/kyr) total subsidence rates. The detailed trends in both subsidence and sedimentation mark the development and evolution of the foreland depozones, from distal foreland depozones to foredeep and wedge‐top depozones, relative to the emplacement of the Pedraforca Nappe and Cadí Thrust Nappe. The most pronounced sedimentary shift in the Cadí Nappe occurred at 49 Ma, with the rapid drowning of the carbonate platforms and its transition into talus and deep basinal environments. Carbonate platforms collapsed and resedimented on the talus of the elongated trough, newly formed parallel to the orogenic front. This marked the onset of tectonic subsidence triggered by the submarine emplacement of the Lower Pedraforca Nappe. The emersion of the orogenic wedge drove the entry of siliciclastics, lagged by 1 Myr, into the Ripoll Trough. The foredeep filled rapidly (5.5 km thickness in less than 7 Myr) compared to other South Pyrenean regions, favoured by its semi‐enclosed palaeogeography. The emplacement of the Vallfogona Thrust as early as the Middle Lutetian (43 Ma) brought the Cadi Nappe into a wedge‐top setting. However, the Ripoll growth syncline continued acting as a temporary sink for alluvial sedimentation while a foredeep developed further south in the autochthonous Ebro Basin. The flexural response of the Iberian plate to the tectonic thickening of the Axial Zone counterbalanced for a period the local uplift of the Cadi Nappe, providing accommodation space for the top sediments filling the Ripoll Syncline. In this paper, we contribute to the tectono‐sedimentary evolution of the south Pyrenean foreland system by reviewing the chronostratigraphic framework of the basin infill in its eastern sector. Six sections are analysed and cross‐correlated to build a 6.5 km thick composite magnetostratigraphy that represents the complete record of the Cadí Nappe in the Ripoll Syncline.
A fractal fragmentation model for rockfalls
The impact-induced rock mass fragmentation in a rockfall is analyzed by comparing the in situ block size distribution (IBSD) of the rock mass detached from the cliff face and the resultant rockfall block size distribution (RBSD) of the rockfall fragments on the slope. The analysis of several inventoried rockfall events suggests that the volumes of the rockfall fragments can be characterized by a power law distribution. We propose the application of a three-parameter rockfall fractal fragmentation model (RFFM) for the transformation of the IBSD into the RBSD. A discrete fracture network model is used to simulate the discontinuity pattern of the detached rock mass and to generate the IBSD. Each block of the IBSD of the detached rock mass is an initiator. A survival rate is included to express the proportion of the unbroken blocks after the impact on the ground surface. The model was calibrated using the volume distribution of a rockfall event in Vilanova de Banat in the Cadí Sierra, Eastern Pyrenees, Spain. The RBSD was obtained directly in the field, by measuring the rock block fragments deposited on the slope. The IBSD and the RBSD were fitted by exponential and power law functions, respectively. The results show that the proposed fractal model can successfully generate the RBSD from the IBSD and indicate the model parameter values for the case study.
A methodology to obtain the block size distribution of fragmental rockfall deposits
Rock masses detached as rockfalls usually disintegrate upon impact on the ground surface. The knowledge of the rockfall block size distribution (RBSD) generated in the rockfall deposit is useful for the analysis of the trajectories of the rock blocks, run-out distances, impact energies and for the quantitative assessment of the rockfall hazard. Obtaining the RBSD of a large rockfall deposit may become a challenge due to the high number of blocks to be measured. In this paper, we present a methodology developed for mid-size fragmental rockfalls (10 3 up to 10 5  m 3 ) and its application to the Cadí massif, Eastern Pyrenees. The methodology consists of counting and measuring block fragments in selected sampling plots within homogeneous zones in the young debris cover generated by the rockfall along with all the large scattered rock blocks. The size distribution of blocks obtained in the sampling plots is extrapolated to the whole young debris cover and summed to the inventoried large scattered blocks to derive the RBSD of the whole rockfall event. The obtained distributions from the fragments can be well fitted by a power law distribution, indicating the scale invariant character of the fragmentation process (Hartmann (Icarus 2(2):201–203, 1969); Turcotte (J Geophys Res 91(NO B2):1921–1926, 1986). The total volume of the rockfall fragments has been checked against the volume at the rockfall source. The latter has been calculated comparing 3D digital surface models before and after the rockfall event.
Comparative Efficacy Between Intense Pulsed Light Narrow Spectrum and Broad Spectrum in the Treatment of Post-Acne Erythema (PAE)
Post-acne erythema (PAE) is one of the most common physical sequelae of acne regression, PAE can resolve spontaneously, but in some patients it may last for years. This study aimed to evaluate the efficacy and safety of narrow and broad spectrum filters of intense pulsed light (IPL) for the treatment of PAE. This prospective study evaluated 60 patients with PAE for at least 6 months, assigned equally to three groups: 1st group received narrow-spectrum with vascular filter (530-650 nm and 900-1200 nm), 2nd group received broad-spectrum with (560/590-1200 nm) filters, the appropriate adjustments were made according to patient's skin colour. Every patient received four sessions one month apart. 3rd group is blank control group did not receive any treatment. CAT (CEA (Clinical Erythema Assessment), Area, and Telangiectasia) used to grade clearance of PAE before and after treatment, Investigators Global Assessment (IGA) used to assess the improvement score after the treatment, and Cardiff Acne Disability Index (CADI) used to evaluate the impact of PAE on patients' Quality of Life (QoL). Self-satisfaction scale completed at the follow-up. Adverse events and acne relapse were recorded. A significant decrease of CAT score in vascular group (P<0.05). IGA scale showed significant improvement after vascular treatment. A significant decrease in CADI (P<0.05) after vascular treatment. Patient satisfaction was higher in vascular group than control and blank control groups. Acne relapse observed in control and blank control groups (40% and 15%, respectively).10% of patients showed pigmentation, 15% had blisters after 590 nm treatment. IPL vascular filter (530-650 nm and 900-1200 nm) have efficacy in the treatment of PAE. CADI score, patient satisfaction, and acne relapse were significantly better after vascular narrow spectrum treatment than broad-spectrum treatment.
Planning and Optimizing Charging Infrastructure and Scheduling in Smart Grids with PyPSA-LOPF: A Case Study at Cadi Ayyad University
This paper presents an optimization model for the charging infrastructure of electric vehicles (EV) designed to minimize installation costs, maximize the utilization of photovoltaic energy, reduce dependency on the electrical grid, and optimize charging times. The model utilizes methodologies such as Linear Optimal Power Flow (LOPF) to align EV charging schedules with the availability of renewable energy sources. Key inputs for the model include Photovoltaic (PV) production profiles, EV charging demands, specifications of the chargers, and the availability of grid energy. The framework integrates installation costs, grid energy consumption, and charging duration into a weighted objective function, ensuring energy balance and operational efficiency while adhering to budgetary constraints. Five distinct optimization scenarios are analyzed to evaluate the trade-offs between cost, charging duration, and reliance on various energy sources. The simulation results obtained from Cadi Ayyad University validate the model’s effectiveness in balancing costs, enhancing charging performance, and increasing dependence on solar energy. This approach provides a comprehensive solution for the development of sustainable and cost-effective EV charging infrastructure.
Agricultural Drought Model Based on Machine Learning Cubist Algorithm and Its Evaluation
Soil moisture is the most direct evaluation index for agricultural drought. It is not only directly affected by meteorological conditions such as precipitation and temperature but is also indirectly influenced by environmental factors such as climate zone, surface vegetation type, soil type, elevation, and irrigation conditions. These influencing factors have a complex, nonlinear relationship with soil moisture. It is difficult to accurately describe this non-linear relationship using a single indicator constructed from meteorological data, remote sensing data, and other data. It is also difficult to fully consider environmental factors using a single drought index on a large scale. Machine learning (ML) models provide new technology for nonlinear problems such as soil moisture retrieval. Based on the multi-source drought indexes calculated by meteorological, remote sensing, and land surface model data, and environmental factors, and using the Cubist algorithm based on a classification decision tree (CART), a comprehensive agricultural drought monitoring model at 10 cm, 20 cm, and 50 cm depth in Gansu Province is established. The influence of environmental factors and meteorological factors on the accuracy of the comprehensive model is discussed, and the accuracy of the comprehensive model is evaluated. The results show that the comprehensive model has a significant improvement in accuracy compared to the single variable model, which is a decrease of about 26% and 28% in RMSE and MAPE, respectively, compared to the best MCI model. Environmental factors such as season, DEM, and climate zone, especially the DEM, play a crucial role in improving the accuracy of the integrated model. These three environmental factors can comprehensively reduce the average RMSE of the comprehensive model by about 25%. Compared to environmental factors, meteorological factors have a slightly weaker effect on improving the accuracy of comprehensive models, which is a decrease of about 6.5% in RMSE. The fitting accuracy of the comprehensive model in humid and semi-humid areas, as well as semi-arid and semi-humid areas, is significantly higher than that in arid and semi-arid areas. These research results have important guiding significance for improving the accuracy of agricultural drought monitoring in Gansu Province.
Development of Carbidic Austempered Ductile Iron (CADI)
This study aimed at optimizing impact toughness and high wear resistant carbidic austempered ductile iron (CADI) by controlling the morphology, size and quantity of carbides. The effects of dynamic solidification, niobium addition, combined action of them and heat treatment have been investigated. Investigations were performed by means of the image analyzer, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction. Impact toughness, hardness and abrasion wear resistance tests were conducted. Fracture surfaces were studied. Results indicated that microstructural control during solidification is the most valuable tool to attain the optimum combination between impact toughness and wear resistance in CADI. Combined action of Nb addition and dynamic solidification improves impact toughness, hardness and wear resistance even more than the action of each individual factor. In the as-cast condition, impact toughness, hardness and abrasion resistance were improved after dynamic solidification compared to statically solidify one by 31.2%, 18.75% and 87.96% respectively. This enhancement was increased to 36.9%, 25.93% and 128. % by adding 1% Nb. Lower tempering temperature of 275°C exhibit best hardness and abrasion resistance better than higher tempering temperature of 375°C.
Comparison of SuperDARN peak electron density estimates based on elevation angle measurements to ionosonde and incoherent scatter radar measurements
Measurements of the electron density at the F region peak by the Canadian Advanced Digital Ionosonde (CADI) and the Resolute Incoherent Scatter Radar (RISR) are used to assess the quality of peak electron density estimates made from elevation angle measurements by the Super Dual Auroral Radar Network (SuperDARN) high-frequency radar at Rankin Inlet (RKN). All three instruments monitor the ionosphere near Resolute Bay. The CADI-RKN joint dataset comprises measurements between 2008 and 2017 while RISR-RKN dataset covers about 60 daylong events in 2016. Reasonable agreement between the RKN estimates and measurements by CADI and RISR is shown. Two minor discrepancies are discussed: RKN radar daytime peak electron density overestimation by ~ 10% and underestimation by up to 30% in other time sectors. In winter nighttime and dawn, cases were identified in which the RKN radar significantly overestimates the peak electron density. This occurs when the phase in the RKN interferometer measurements is incorrectly shifted by 2π, and this is most significant when electron densities are low. Statistical fitting to the joint data sets, split into four time sectors of a day, has been done and parameters of the fit have been determined. These allow slight adjustment of measured real-time RKN values to better reflect real peak electron densities in the ionosphere within its field of view.
Evaluation of CADI Low Alloyed with Chromium for Camshafts Application
Different processing routes have been developed to increase the strength and hardness of camshafts for automotive applications. In this work, two carbidic austempered ductile irons (CADIs), alloyed with 0.2 and 0.4 wt% Cr, were evaluated to determine their suitability in the camshaft production by microscopy techniques and mechanical tests. The CADIs were produced at austempering temperatures of 265 and 305 °C, during 30, 60, 90, and 120 min. The microstructural characterization was carried out by optical microscopy, while Rockwell C Hardness, tensile, Charpy impact, and block-on-ring wear loss tests were evaluated for mechanical characterization from the camshaft and standard keel block. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by X-ray diffraction measurements. The process window was found in the range from 60 to 120 min, for both austempering temperatures, while the highest amount of ausferrite was obtained at 90 min. The formation of carbides was increased as the chromium content was increased. The highest hardness (49 HRC) and wear resistance (0.252 mm3) were obtained for the lower austempering temperature (265 °C, 90 min) and higher chromium content (0.4%). The highest austempering temperature (305 °C, 90 min) and lowest chromium content (0.2%) allow for obtaining the highest toughness (22.91 J) and elongation (4.2%), while the highest tensile strength (1027 MPa) was obtained for the CADI containing 0.2% Cr heat-treated to 265 °C.