Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,070 result(s) for "canonical correlation analysis"
Sort by:
A Robust and Accurate Indoor Localization Using Learning-Based Fusion of Wi-Fi RTT and RSSI
Great attention has been paid to indoor localization due to its wide range of associated applications and services. Fingerprinting and time-based localization techniques are among the most popular approaches in the field due to their promising performance. However, fingerprinting techniques usually suffer from signal fluctuations and interference, which yields unstable localization performance. On the other hand, the accuracy of time-based techniques is highly affected by multipath propagation errors and non-line-of-sight transmissions. To combat these challenges, this paper presents a hybrid deep-learning-based indoor localization system called RRLoc which fuses fingerprinting and time-based techniques with a view of combining their advantages. RRLoc leverages a novel approach for fusing received signal strength indication (RSSI) and round-trip time (RTT) measurements and extracting high-level features using deep canonical correlation analysis. The extracted features are then used in training a localization model for facilitating the location estimation process. Different modules are incorporated to improve the deep model’s generalization against overtraining and noise. The experimental results obtained at two different indoor environments show that RRLoc improves localization accuracy by at least 267% and 496% compared to the state-of-the-art fingerprinting and ranging-based-multilateration techniques, respectively.
Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning
Background Classifying breast cancer subtypes is crucial for clinical diagnosis and treatment. However, the early symptoms of breast cancer may not be apparent. Rapid advances in high-throughput sequencing technology have led to generating large number of multi-omics biological data. Leveraging and integrating the available multi-omics data can effectively enhance the accuracy of identifying breast cancer subtypes. However, few efforts focus on identifying the associations of different omics data to predict the breast cancer subtypes. Results In this paper, we propose a differential sparse canonical correlation analysis network (DSCCN) for classifying the breast cancer subtypes. DSCCN performs differential analysis on multi-omics expression data to identify differentially expressed (DE) genes and adopts sparse canonical correlation analysis (SCCA) to mine highly correlated features between multi-omics DE-genes. Meanwhile, DSCCN uses multi-task deep learning neural network separately to train the correlated DE-genes to predict breast cancer subtypes, which spontaneously tackle the data heterogeneity problem in integrating multi-omics data. Conclusions The experimental results show that by mining the associations among multi-omics data, DSCCN is more capable of accurately classifying breast cancer subtypes than the existing methods.
Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis
The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average  (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average  (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average  and  values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average  (16.55 dB, utilizing db1 wavelet packet) and largest average  (41.40%, using fk8 wavelet packet). The highest average  and  using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average  also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both  and  values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.
Filter bank second-order underdamped stochastic resonance analysis for implementing a short-term high-speed SSVEP detection
•The novel fusions of common filter bank analysis, CCA dimensionality reduction methods, USSR models, and MSI recognition models are used in SSVEP signal recognition.•In contrast to typical dimensionality reduction methods, CCA exhibits higher adaptability for SSVEP rhythm components.•This untrained method provides the possibility of applying a nonlinear model from one-dimensional signals to multi-dimensional signals.•The findings of this study underscore the expansive potential for the application of BCI systems in the realm of neuroscience and signal processing.•This study demonstrates the advantages of nonlinear algorithms in short-term high-speed SSVEP detection. The progression of brain-computer interfaces (BCIs) has been propelled by breakthroughs in neuroscience, signal processing, and machine learning, marking it as a dynamic field of study over the past few decades. Nevertheless, the nonlinear and non-stationary characteristics of steady-state visual evoked potentials (SSVEPs), coupled with the incongruity between frequently employed linear techniques and nonlinear signal attributes, resulted in the subpar performance of mainstream non-training algorithms like canonical correlation analysis (CCA), multivariate synchronization index (MSI), and filter bank CCA (FBCCA) in short-term SSVEP detection. To tackle this problem, the novel fusions of common filter bank analysis, CCA dimensionality reduction methods, USSR models, and MSI recognition models are used in SSVEP signal recognition. Unlike conventional linear techniques such as CCA, MSI, and FBCCA, the filter bank second-order underdamped stochastic resonance (FBUSSR) analysis demonstrates superior efficacy in the detection of short-term high-speed SSVEPs. This research enlists 32 subjects and uses a public dataset to assess the proposed approach, and the experimental outcomes indicate that the non-training method can attain greater recognition precision and stability. Furthermore, under the conditions of the newly proposed fusion method and light stimulation, the USSR model exhibits the most optimal enhancement effect. The findings of this study underscore the expansive potential for the application of BCI systems in the realm of neuroscience and signal processing.
Regularized Generalized Canonical Correlation Analysis
Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables. It constitutes a general framework for many multi-block data analysis methods. It combines the power of multi-block data analysis methods (maximization of well identified criteria) and the flexibility of PLS path modeling (the researcher decides which blocks are connected and which are not). Searching for a fixed point of the stationary equations related to RGCCA, a new monotonically convergent algorithm, very similar to the PLS algorithm proposed by Herman Wold, is obtained. Finally, a practical example is discussed.
Identification of multimodal brain imaging association via a parameter decomposition based sparse multi-view canonical correlation analysis method
Background With the development of noninvasive imaging technology, collecting different imaging measurements of the same brain has become more and more easy. These multimodal imaging data carry complementary information of the same brain, with both specific and shared information being intertwined. Within these multimodal data, it is essential to discriminate the specific information from the shared information since it is of benefit to comprehensively characterize brain diseases. While most existing methods are unqualified, in this paper, we propose a parameter decomposition based sparse multi-view canonical correlation analysis (PDSMCCA) method. PDSMCCA could identify both modality-shared and -specific information of multimodal data, leading to an in-depth understanding of complex pathology of brain disease. Results Compared with the SMCCA method, our method obtains higher correlation coefficients and better canonical weights on both synthetic data and real neuroimaging data. This indicates that, coupled with modality-shared and -specific feature selection, PDSMCCA improves the multi-view association identification and shows meaningful feature selection capability with desirable interpretation. Conclusions The novel PDSMCCA confirms that the parameter decomposition is a suitable strategy to identify both modality-shared and -specific imaging features. The multimodal association and the diverse information of multimodal imaging data enable us to better understand the brain disease such as Alzheimer’s disease.
Trial Analysis of the Relationship between Taste and Biological Information Obtained While Eating Strawberries for Sensory Evaluation
This paper presents a trial analysis of the relationship between taste and biological information obtained while eating strawberries (for a sensory evaluation). This study used the visual analog scale (VAS); we collected questionnaires used in previous studies and human brain activity obtained while eating strawberries. In our analysis, we assumed that brain activity is highly correlated with taste. Then, the relationships between brain activity and other data, such as VAS and questionnaires, could be analyzed through a canonical correlation analysis, which is a multivariate analysis. Through an analysis of brain activity, the potential relationship with \"taste\" (that is not revealed by the initial simple correlation analysis) can be discovered. This is the main contribution of this study. In the experiments, we discovered the potential relationship between cultural factors (in the questionnaires) and taste. We also found a strong relationship between taste and individual information. In particular, the analysis of cross-loading between brain activity and individual information suggests that acidity and the sugar-to-acid ratio are related to taste.
Solving the SSVEP Paradigm Using the Nonlinear Canonical Correlation Analysis Approach
This paper presents the implementation of nonlinear canonical correlation analysis (NLCCA) approach to detect steady-state visual evoked potentials (SSVEP) quickly. The need for the fast recognition of proper stimulus to help end an SSVEP task in a BCI system is justified due to the flickering external stimulus exposure that causes users to start to feel fatigued. Measuring the accuracy and exposure time can be carried out through the information transfer rate—ITR, which is defined as a relationship between the precision, the number of stimuli, and the required time to obtain a result. NLCCA performance was evaluated by comparing it with two other approaches—the well-known canonical correlation analysis (CCA) and the least absolute reduction and selection operator (LASSO), both commonly used to solve the SSVEP paradigm. First, the best average ITR value was found from a dataset comprising ten healthy users with an average age of 28, where an exposure time of one second was obtained. In addition, the time sliding window responses were observed immediately after and around 200 ms after the flickering exposure to obtain the phase effects through the coefficient of variation (CV), where NLCCA obtained the lowest value. Finally, in order to obtain statistical significance to demonstrate that all approaches differ, the accuracy and ITR from the time sliding window responses was compared using a statistical analysis of variance per approach to identify differences between them using Tukey’s test.
Multimodal Emotion Recognition Based on Facial Expressions, Speech, and Body Gestures
The research of multimodal emotion recognition based on facial expressions, speech, and body gestures is crucial for oncoming intelligent human–computer interfaces. However, it is a very difficult task and has seldom been researched in this combination in the past years. Based on the GEMEP and Polish databases, this contribution focuses on trimodal emotion recognition from facial expressions, speech, and body gestures, including feature extraction, feature fusion, and multimodal classification of the three modalities. In particular, for feature fusion, two novel algorithms including supervised least squares multiset kernel canonical correlation analysis (SLSMKCCA) and sparse supervised least squares multiset kernel canonical correlation analysis (SSLSMKCCA) are presented, respectively, to carry out efficient facial expression, speech, and body gesture feature fusion. Different from the traditional multiset kernel canonical correlation analysis (MKCCA) algorithms, our SLSKMCCA algorithm is a supervised version and is based on the least squares form. The SSLSKMCCA algorithm is implemented by the combination of SLSMKCCA and a sparse item (L1 Norm). Moreover, two effective solving algorithms for SLSMKCCA and SSLSMKCCA are presented in addition, which use the alternated least squares and augmented Lagrangian multiplier methods, respectively. The extensive experimental results on the popular public GEMEP and Polish databases show that the recognition rate of multimodal emotion recognition is superior to bimodal and monomodal emotion recognition on average, and our presented SLSMKCCA and SSLSMKCCA fusion methods both obtain very high recognition rates, especially for the SSLSMKCCA fusion method.
Associating brain imaging phenotypes and genetic in Alzheimer’s disease via JSCCA approach with autocorrelation constraints
Imaging genetics research can explore the potential correlation between imaging and genomics. Most association analysis methods cannot effectively use the prior knowledge of the original data. In this respect, we add the prior knowledge of each original data to mine more effective biomarkers. The study of imaging genetics based on the sparse canonical correlation analysis (SCCA) is helpful to mine the potential biomarkers of neurological diseases. To improve the performance and interpretability of SCCA, we proposed a penalty method based on the autocorrelation matrix for discovering the possible biological mechanism between single nucleotide polymorphisms (SNP) variations and brain regions changes of Alzheimer’s disease (AD). The addition of the penalty allows the proposed algorithm to analyze the correlation between different modal features. The proposed algorithm obtains more biologically interpretable ROIs and SNPs that are significantly related to AD, which has better anti-noise performance. Compared with other SCCA-based algorithms (JCB-SCCA, JSNMNMF), the proposed algorithm can still maintain a stronger correlation with ground truth even when the noise is larger. Then, we put the regions of interest (ROI) selected by the three algorithms into the SVM classifier. The proposed algorithm has higher classification accuracy. Also, we use ridge regression with SNPs selected by three algorithms and four AD risk ROIs. The proposed algorithm has a smaller root mean square error (RMSE). It shows that proposed algorithm has a good ability in association recognition and feature selection. Furthermore, it selects important features more stably, improving the clinical diagnosis of new potential biomarkers. Graphical abstract