Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "capacitive deionization configurations"
Sort by:
Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization
Electrochemical water desalination has been a major research area since the 1960s with the development of capacitive deionization technique. For the latter, its modus operandi lies in temporary salt ion adsorption when a simple potential difference (1.0–1.4 V) of about 1.2 V is supplied to the system to temporarily create an electric field that drives the ions to their different polarized poles and subsequently desorb these solvated ions when potential is switched off. Capacitive deionization targets/extracts the solutes instead of the solvent and thus consumes less energy and is highly effective for brackish water. This paper reviews Capacitive Deionization (mechanism of operation, sustainability, optimization processes, and shortcomings) with extension to its counterparts (Membrane Capacitive Deionization and Flow Capacitive Deionization).
Impact of flow configuration on electrosorption performance and energy consumption of CDI systems
The flow configuration selected for a capacitive deionization (CDI) system can impact the desalination performance due to drastic changes to the ion transport. Herein, a zero-gap CDI cell fixture with various flow configurations was utilized to investigate the effects of flow directionality on the CDI performance of activated carbon cloth (ACC) electrodes. Salt adsorption capacities and salt adsorption rates were determined for three commonly studied flow field designs (parallel (PFF), interdigitated (IDFF), and serpentine (SFF)) at various flow rates (2–128 mL/min). Increasing the flow rate was found to result in decreasing CDI performance for SFF and IDFF designs. On the other hand, the peak performance was observed for the parallel flow field at 32 mL/min flow rate. Additionally, the pressure drop values for different flow configurations were measured, and the energy consumptions were calculated. Overall, the findings showed that the performance of CDI systems strongly depends on the selected flow field geometry. Among the tested flow fields, the parallel configuration offered the best balance between CDI performance and energy efficiency. However, the designs that exert high hydrodynamic forces on the electrode plane showed poor performance due to rip-off of ions from the double layer causing a significant capacity loss for ACC electrodes.